Spaces:
Sleeping
Sleeping
import time | |
import pickle | |
import logging | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
from yaml import safe_dump | |
from yacs.config import load_cfg, CfgNode # , _to_dict | |
from maskrcnn_benchmark.config import cfg | |
from maskrcnn_benchmark.engine.inference import _accumulate_predictions_from_multiple_gpus | |
from maskrcnn_benchmark.modeling.backbone.nas import get_layer_name | |
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, get_world_size, all_gather | |
from maskrcnn_benchmark.data.datasets.evaluation import evaluate | |
from maskrcnn_benchmark.utils.flops import profile | |
choice = lambda x: x[np.random.randint(len(x))] if isinstance(x, tuple) else choice(tuple(x)) | |
def gather_candidates(all_candidates): | |
all_candidates = all_gather(all_candidates) | |
all_candidates = [cand for candidates in all_candidates for cand in candidates] | |
return list(set(all_candidates)) | |
def gather_stats(all_candidates): | |
all_candidates = all_gather(all_candidates) | |
reduced_statcs = {} | |
for candidates in all_candidates: | |
reduced_statcs.update(candidates) # will replace the existing key with last value if more than one exists | |
return reduced_statcs | |
def compute_on_dataset(model, rngs, data_loader, device=cfg.MODEL.DEVICE): | |
model.eval() | |
results_dict = {} | |
cpu_device = torch.device("cpu") | |
for _, batch in enumerate(data_loader): | |
images, targets, image_ids = batch | |
with torch.no_grad(): | |
output = model(images.to(device), rngs=rngs) | |
output = [o.to(cpu_device) for o in output] | |
results_dict.update({img_id: result for img_id, result in zip(image_ids, output)}) | |
return results_dict | |
def bn_statistic(model, rngs, data_loader, device=cfg.MODEL.DEVICE, max_iter=500): | |
for name, param in model.named_buffers(): | |
if "running_mean" in name: | |
nn.init.constant_(param, 0) | |
if "running_var" in name: | |
nn.init.constant_(param, 1) | |
model.train() | |
for iteration, (images, targets, _) in enumerate(data_loader, 1): | |
images = images.to(device) | |
targets = [target.to(device) for target in targets] | |
with torch.no_grad(): | |
loss_dict = model(images, targets, rngs) | |
if iteration >= max_iter: | |
break | |
return model | |
def inference( | |
model, | |
rngs, | |
data_loader, | |
iou_types=("bbox",), | |
box_only=False, | |
device="cuda", | |
expected_results=(), | |
expected_results_sigma_tol=4, | |
output_folder=None, | |
): | |
# convert to a torch.device for efficiency | |
device = torch.device(device) | |
dataset = data_loader.dataset | |
predictions = compute_on_dataset(model, rngs, data_loader, device) | |
# wait for all processes to complete before measuring the time | |
synchronize() | |
predictions = _accumulate_predictions_from_multiple_gpus(predictions) | |
if not is_main_process(): | |
return | |
extra_args = dict( | |
box_only=box_only, | |
iou_types=iou_types, | |
expected_results=expected_results, | |
expected_results_sigma_tol=expected_results_sigma_tol, | |
) | |
return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args) | |
def fitness(cfg, model, rngs, val_loaders): | |
iou_types = ("bbox",) | |
if cfg.MODEL.MASK_ON: | |
iou_types = iou_types + ("segm",) | |
for data_loader_val in val_loaders: | |
results = inference( | |
model, | |
rngs, | |
data_loader_val, | |
iou_types=iou_types, | |
box_only=False, | |
device=cfg.MODEL.DEVICE, | |
expected_results=cfg.TEST.EXPECTED_RESULTS, | |
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL, | |
) | |
synchronize() | |
return results | |
class EvolutionTrainer(object): | |
def __init__(self, cfg, model, flops_limit=None, is_distributed=True): | |
self.log_dir = cfg.OUTPUT_DIR | |
self.checkpoint_name = os.path.join(self.log_dir, "evolution.pth") | |
self.is_distributed = is_distributed | |
self.states = model.module.mix_nums if is_distributed else model.mix_nums | |
self.supernet_state_dict = pickle.loads(pickle.dumps(model.state_dict())) | |
self.flops_limit = flops_limit | |
self.model = model | |
self.candidates = [] | |
self.vis_dict = {} | |
self.max_epochs = cfg.SEARCH.MAX_EPOCH | |
self.select_num = cfg.SEARCH.SELECT_NUM | |
self.population_num = cfg.SEARCH.POPULATION_NUM / get_world_size() | |
self.mutation_num = cfg.SEARCH.MUTATION_NUM / get_world_size() | |
self.crossover_num = cfg.SEARCH.CROSSOVER_NUM / get_world_size() | |
self.mutation_prob = cfg.SEARCH.MUTATION_PROB / get_world_size() | |
self.keep_top_k = {self.select_num: [], 50: []} | |
self.epoch = 0 | |
self.cfg = cfg | |
def save_checkpoint(self): | |
if not is_main_process(): | |
return | |
if not os.path.exists(self.log_dir): | |
os.makedirs(self.log_dir) | |
info = {} | |
info["candidates"] = self.candidates | |
info["vis_dict"] = self.vis_dict | |
info["keep_top_k"] = self.keep_top_k | |
info["epoch"] = self.epoch | |
torch.save(info, self.checkpoint_name) | |
print("Save checkpoint to", self.checkpoint_name) | |
def load_checkpoint(self): | |
if not os.path.exists(self.checkpoint_name): | |
return False | |
info = torch.load(self.checkpoint_name) | |
self.candidates = info["candidates"] | |
self.vis_dict = info["vis_dict"] | |
self.keep_top_k = info["keep_top_k"] | |
self.epoch = info["epoch"] | |
print("Load checkpoint from", self.checkpoint_name) | |
return True | |
def legal(self, cand): | |
assert isinstance(cand, tuple) and len(cand) == len(self.states) | |
if cand in self.vis_dict: | |
return False | |
if self.flops_limit is not None: | |
net = self.model.module.backbone if self.is_distributed else self.model.backbone | |
inp = (1, 3, 224, 224) | |
flops, params = profile(net, inp, extra_args={"paths": list(cand)}) | |
flops = flops / 1e6 | |
print("flops:", flops) | |
if flops > self.flops_limit: | |
return False | |
return True | |
def update_top_k(self, candidates, *, k, key, reverse=False): | |
assert k in self.keep_top_k | |
# print('select ......') | |
t = self.keep_top_k[k] | |
t += candidates | |
t.sort(key=key, reverse=reverse) | |
self.keep_top_k[k] = t[:k] | |
def eval_candidates(self, train_loader, val_loader): | |
for cand in self.candidates: | |
t0 = time.time() | |
# load back supernet state dict | |
self.model.load_state_dict(self.supernet_state_dict) | |
# bn_statistic | |
model = bn_statistic(self.model, list(cand), train_loader) | |
# fitness | |
evals = fitness(cfg, model, list(cand), val_loader) | |
if is_main_process(): | |
acc = evals[0].results["bbox"]["AP"] | |
self.vis_dict[cand] = acc | |
print("candiate ", cand) | |
print("time: {}s".format(time.time() - t0)) | |
print("acc ", acc) | |
def stack_random_cand(self, random_func, *, batchsize=10): | |
while True: | |
cands = [random_func() for _ in range(batchsize)] | |
for cand in cands: | |
yield cand | |
def random_can(self, num): | |
# print('random select ........') | |
candidates = [] | |
cand_iter = self.stack_random_cand(lambda: tuple(np.random.randint(i) for i in self.states)) | |
while len(candidates) < num: | |
cand = next(cand_iter) | |
if not self.legal(cand): | |
continue | |
candidates.append(cand) | |
# print('random {}/{}'.format(len(candidates),num)) | |
# print('random_num = {}'.format(len(candidates))) | |
return candidates | |
def get_mutation(self, k, mutation_num, m_prob): | |
assert k in self.keep_top_k | |
# print('mutation ......') | |
res = [] | |
iter = 0 | |
max_iters = mutation_num * 10 | |
def random_func(): | |
cand = list(choice(self.keep_top_k[k])) | |
for i in range(len(self.states)): | |
if np.random.random_sample() < m_prob: | |
cand[i] = np.random.randint(self.states[i]) | |
return tuple(cand) | |
cand_iter = self.stack_random_cand(random_func) | |
while len(res) < mutation_num and max_iters > 0: | |
cand = next(cand_iter) | |
if not self.legal(cand): | |
continue | |
res.append(cand) | |
# print('mutation {}/{}'.format(len(res),mutation_num)) | |
max_iters -= 1 | |
# print('mutation_num = {}'.format(len(res))) | |
return res | |
def get_crossover(self, k, crossover_num): | |
assert k in self.keep_top_k | |
# print('crossover ......') | |
res = [] | |
iter = 0 | |
max_iters = 10 * crossover_num | |
def random_func(): | |
p1 = choice(self.keep_top_k[k]) | |
p2 = choice(self.keep_top_k[k]) | |
return tuple(choice([i, j]) for i, j in zip(p1, p2)) | |
cand_iter = self.stack_random_cand(random_func) | |
while len(res) < crossover_num and max_iters > 0: | |
cand = next(cand_iter) | |
if not self.legal(cand): | |
continue | |
res.append(cand) | |
# print('crossover {}/{}'.format(len(res),crossover_num)) | |
max_iters -= 1 | |
# print('crossover_num = {}'.format(len(res))) | |
return res | |
def train(self, train_loader, val_loader): | |
logger = logging.getLogger("maskrcnn_benchmark.evolution") | |
if not self.load_checkpoint(): | |
self.candidates = gather_candidates(self.random_can(self.population_num)) | |
while self.epoch < self.max_epochs: | |
self.eval_candidates(train_loader, val_loader) | |
self.vis_dict = gather_stats(self.vis_dict) | |
self.update_top_k(self.candidates, k=self.select_num, key=lambda x: 1 - self.vis_dict[x]) | |
self.update_top_k(self.candidates, k=50, key=lambda x: 1 - self.vis_dict[x]) | |
if is_main_process(): | |
logger.info("Epoch {} : top {} result".format(self.epoch + 1, len(self.keep_top_k[self.select_num]))) | |
for i, cand in enumerate(self.keep_top_k[self.select_num]): | |
logger.info(" No.{} {} perf = {}".format(i + 1, cand, self.vis_dict[cand])) | |
mutation = gather_candidates(self.get_mutation(self.select_num, self.mutation_num, self.mutation_prob)) | |
crossover = gather_candidates(self.get_crossover(self.select_num, self.crossover_num)) | |
rand = gather_candidates(self.random_can(self.population_num - len(mutation) - len(crossover))) | |
self.candidates = mutation + crossover + rand | |
self.epoch += 1 | |
self.save_checkpoint() | |
def save_candidates(self, cand, template): | |
paths = self.keep_top_k[self.select_num][cand - 1] | |
with open(template, "r") as f: | |
super_cfg = load_cfg(f) | |
search_spaces = {} | |
for mix_ops in super_cfg.MODEL.BACKBONE.LAYER_SEARCH: | |
search_spaces[mix_ops] = super_cfg.MODEL.BACKBONE.LAYER_SEARCH[mix_ops] | |
search_layers = super_cfg.MODEL.BACKBONE.LAYER_SETUP | |
layer_setup = [] | |
for i, layer in enumerate(search_layers): | |
name, setup = get_layer_name(layer, search_spaces) | |
if not isinstance(name, list): | |
name = [name] | |
name = name[paths[i]] | |
layer_setup.append("('{}', {})".format(name, str(setup)[1:-1])) | |
super_cfg.MODEL.BACKBONE.LAYER_SETUP = layer_setup | |
cand_cfg = _to_dict(super_cfg) | |
del cand_cfg["MODEL"]["BACKBONE"]["LAYER_SEARCH"] | |
with open( | |
os.path.join(self.cfg.OUTPUT_DIR, os.path.basename(template)).replace(".yaml", "_cand{}.yaml".format(cand)), | |
"w", | |
) as f: | |
f.writelines(safe_dump(cand_cfg)) | |
super_weight = self.supernet_state_dict | |
cand_weight = OrderedDict() | |
cand_keys = ["layers.{}.ops.{}".format(i, c) for i, c in enumerate(paths)] | |
for key, val in super_weight.items(): | |
if "ops" in key: | |
for ck in cand_keys: | |
if ck in key: | |
cand_weight[key.replace(ck, ck.split(".ops.")[0])] = val | |
else: | |
cand_weight[key] = val | |
torch.save({"model": cand_weight}, os.path.join(self.cfg.OUTPUT_DIR, "init_cand{}.pth".format(cand))) | |