kcelia's picture
chore: update the space with layout
174cd37 unverified
raw
history blame
14 kB
"""A Gradio app for anonymizing text data using FHE."""
import os
import re
from typing import Dict, List
import gradio as gr
import pandas as pd
from fhe_anonymizer import FHEAnonymizer
from openai import OpenAI
from utils_demo import *
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH)
clean_directory()
anonymizer = FHEAnonymizer()
client = OpenAI(api_key=os.environ.get("openaikey"))
def select_static_sentences_fn(selected_sentences: List):
selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences]
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))}
def key_gen_fn() -> Dict:
"""Generate keys for a given user.
Returns:
dict: A dictionary containing the generated keys and related information.
"""
print("Key Gen..")
anonymizer.generate_key()
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = (
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
)
print(error_message)
return {gen_key_btn: gr.update(value=error_message)}
else:
return {gen_key_btn: gr.update(value="Keys have been generated βœ…")}
def encrypt_query_fn(query):
print(f"Query: {query}")
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {output_encrypted_box: gr.update(value=error_message)}
if is_user_query_valid(query):
# TODO: check if the query is related to our context
error_msg = (
"Unable to process ❌: The request exceeds the length limit or falls "
"outside the scope of this document. Please refine your query."
)
print(error_msg)
return {query_box: gr.update(value=error_msg)}
anonymizer.encrypt_query(query)
encrypted_tokens = read_pickle(KEYS_DIR / "encrypted_quantized_query")
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))}
def run_fhe_fn(query_box):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
anonymizer.run_server_and_decrypt_output(query_box)
anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence")
identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob")
# Convert the list of identified words and probabilities into a DataFrame
if identified_words_with_prob:
identified_df = pd.DataFrame(
identified_words_with_prob, columns=["Identified Words", "Probability"]
)
else:
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
return anonymized_text, identified_df
def query_chatgpt_fn(anonymized_query, anonymized_document):
evaluation_key_path = KEYS_DIR / "evaluation_key"
if not evaluation_key_path.is_file():
error_message = "Error ❌: Please generate the key first!"
return {anonymized_text_output: gr.update(value=error_message)}
encryted_query_path = KEYS_DIR / "encrypted_quantized_query"
if not encryted_query_path.is_file():
error_message = "Error ❌: Please encrypt your query first!"
return {anonymized_text_output: gr.update(value=error_message)}
decrypted_query_path = KEYS_DIR / "reconstructed_sentence"
if not decrypted_query_path.is_file():
error_message = "Error ❌: Please run the FHE computation first!"
return {anonymized_text_output: gr.update(value=error_message)}
prompt = read_txt(PROMPT_PATH)
# Prepare prompt
full_prompt = prompt + "\n"
query = (
"Document content:\n```\n"
+ anonymized_document
+ "\n\n```"
+ "Query:\n```\n"
+ anonymized_query
+ "\n```"
)
print(full_prompt)
completion = client.chat.completions.create(
model="gpt-4-1106-preview", # Replace with "gpt-4" if available
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": query},
],
)
anonymized_response = completion.choices[0].message.content
uuid_map = read_json(MAPPING_UUID_PATH)
inverse_uuid_map = {
v: k for k, v in uuid_map.items()
} # TODO load the inverse mapping from disk for efficiency
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response)
processed_tokens = []
for token in tokens:
# Directly append non-word tokens or whitespace to processed_tokens
if not token.strip() or not re.match(r"\w+", token):
processed_tokens.append(token)
continue
if token in inverse_uuid_map:
processed_tokens.append(inverse_uuid_map[token])
else:
processed_tokens.append(token)
deanonymized_response = "".join(processed_tokens)
return anonymized_response, deanonymized_response
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="file/images/logos/zama.jpg">
</p>
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
β€”
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
β€”
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
β€”
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
</p>
"""
)
# gr.Markdown(
# """
# <p align="center">
# <img width="15%" height="15%" src="./encrypted_anonymization_diagram.jpg">
# </p>
# """
# )
with gr.Accordion("What is encrypted anonymization?", open=False):
gr.Markdown(
<<<<<<< HEAD
"""
Anonymization is the process of removing personally identifiable information (PII)
=======
"""Anonymization is the process of removing personally identifiable information (PII)
>>>>>>> 053bec9 (chore: update with marketing remarks)
from data to protect individual privacy.
To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic
Encryption (FHE) can be used to preserve the privacy of the original data using
encryption.
The data remains encrypted throughout the anonymization process, eliminating the need for
third-party access to the raw data. Once the data is anonymized, it can safely be sent
to GenAI services such as ChatGPT.
"""
)
########################## Key Gen Part ##########################
gr.Markdown(
"### Key generation\n\n"
"""In FHE schemes, two sets of keys are generated. First, secret keys are used for
encrypting and decrypting data owned by the client. Second, evaluation keys allow a server
to blindly process the encrypted data. """
)
gen_key_btn = gr.Button("Generate the private and evaluation keys")
gen_key_btn.click(
key_gen_fn,
inputs=[],
outputs=[gen_key_btn],
)
########################## Main document Part ##########################
gr.Markdown("## Private document")
with gr.Row():
with gr.Column():
gr.Markdown(
"""This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n
You can select and deselect sentences to customize the document that will be used
as the initial prompt for ChatGPT in this space's final stage.\n\n
"""
)
with gr.Column():
gr.Markdown(
"""You can see the anonymized document that is sent to ChatGPT here.
ChatGPT will answer any queries that you have about the document below.
The anonymized information is replaced with hexadecimal strings.
"""
)
with gr.Row():
with gr.Column():
original_sentences_box = gr.CheckboxGroup(
ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, label="Original document:"
)
with gr.Column():
anonymized_doc_box = gr.Textbox(
label="Anonymized document:", value=ANONYMIZED_DOCUMENT, interactive=False, lines=11
)
original_sentences_box.change(
fn=select_static_sentences_fn,
inputs=[original_sentences_box],
outputs=[anonymized_doc_box],
)
########################## User Query Part ##########################
gr.Markdown("<hr />")
gr.Markdown("## Private query")
gr.Markdown(
"""Now, formulate a query regarding the selected document.\n\n
Choose from predefined options in 'Example Queries' or craft a custom query
in the 'User Query' box. Keep your question concise and relevant to the text's
context. Any off-topic question will not be processed.
"""
)
with gr.Row():
with gr.Column(scale=5):
with gr.Column(scale=5):
default_query_box = gr.Dropdown(
list(DEFAULT_QUERIES.values()), label="Example queries"
)
query_box = gr.Textbox(
value="Who lives in Maine?", label="User query", interactive=True
)
default_query_box.change(
fn=lambda default_query_box: default_query_box,
inputs=[default_query_box],
outputs=[query_box],
)
with gr.Column(scale=1, min_width=6):
gr.HTML("<div style='height: 25px;'></div>")
gr.Markdown(
"""
<p align="center">
Encrypt data locally with FHE πŸ’» βš™οΈ
</p>
"""
)
encrypt_btn = gr.Button("Encrypt data")
gr.HTML("<div style='height: 25px;'></div>")
with gr.Column(scale=5):
output_encrypted_box = gr.Textbox(
label="Encrypted anonymized query that is sent to the anonymization server", lines=6
)
encrypt_btn.click(
fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box]
)
gr.Markdown("<hr />")
gr.Markdown("## Secure anonymization with FHE")
gr.Markdown(
"""
Once the client encrypts the private query locally,
the client transmits it to a remote server to perform the
anonymization on encrypted data. When the computation is finished, the server returns
the result to the client for decryption.
"""
)
run_fhe_btn = gr.Button("Anonymize with FHE")
anonymized_text_output = gr.Textbox(
label="Decrypted anonymized query that will be sent to ChatGPT", lines=1, interactive=True
)
identified_words_output = gr.Dataframe(label="Identified words", visible=False)
run_fhe_btn.click(
run_fhe_fn,
inputs=[query_box],
outputs=[anonymized_text_output, identified_words_output],
)
gr.Markdown("<hr />")
gr.Markdown("## Secure your communication on ChatGPT with anonymized queries")
gr.Markdown(
"""After securely anonymizing the query with FHE,
you can forward it to ChatGPT without any concern for information leakage."""
)
chatgpt_button = gr.Button("Query ChatGPT")
with gr.Row():
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT anonymized response", lines=13)
chatgpt_response_deanonymized = gr.Textbox(
label="ChatGPT non-anonymized response", lines=13
)
chatgpt_button.click(
query_chatgpt_fn,
inputs=[anonymized_text_output, anonymized_doc_box],
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized],
)
gr.Markdown(
"""**Please Note**: As this space is intended solely for demonstration purposes, some
private information may be missed the the anonymization algorithm. Please validate the
following query before sending it to ChatGPT."""
)
<<<<<<< HEAD
=======
>>>>>>> 053bec9 (chore: update with marketing remarks)
# Launch the app
demo.launch(share=False)