Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain.prompts import PromptTemplate | |
#from langchain.llms import CTransformers | |
from langchain import HuggingFaceHub | |
# Function to get response from Llama 2 model | |
def getLlamaresponse(input_text, no_words, blog_style): | |
#llm = CTransformers(model = 'models\llama-2-7b-chat.Q8_0.gguf', model_type = 'llama',config ={'max_new_tokens': 256, 'temperature':0.01}) | |
llm = HuggingFaceHub( | |
repo_id='meta-llama/Llama-2-7b-hf', | |
model_kwargs={'max_new_tokens': 256, 'temperature':0.01} | |
) | |
## Prompt Template | |
template = """ | |
write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words. | |
""" | |
prompt = PromptTemplate(input_variables = ['blog_style','input_text', 'no_words'], template = template) | |
# Generate Response from llama2 | |
response = llm(prompt.format(blog_style = blog_style, input_text= input_text,no_words = no_words)) | |
print(response) | |
return(response) | |
st.set_page_config(page_title="Generate Blogs", | |
page_icon='π€', | |
layout='centered', | |
initial_sidebar_state='collapsed') | |
st.header("Generate Blogs π€") | |
input_text=st.text_input("Enter the Blog Topic") | |
col1,col2 = st.columns([5,5]) | |
with col1: | |
no_words = st.text_input('No of Words') | |
with col2: | |
blog_style = st.selectbox('Writing the blog for ', ('Researchers','Data Scientists','Common People'), index = 0) | |
submit = st.button('Generate') | |
if submit: | |
st.write(getLlamaresponse(input_text, no_words, blog_style)) |