import streamlit as st from langchain.prompts import PromptTemplate #from langchain.llms import CTransformers from langchain import HuggingFaceHub # Function to get response from Llama 2 model def getLlamaresponse(input_text, no_words, blog_style): #llm = CTransformers(model = 'models\llama-2-7b-chat.Q8_0.gguf', model_type = 'llama',config ={'max_new_tokens': 256, 'temperature':0.01}) llm = HuggingFaceHub( repo_id='meta-llama/Llama-2-7b-hf', model_kwargs={'max_new_tokens': 256, 'temperature':0.01} ) ## Prompt Template template = """ write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words. """ prompt = PromptTemplate(input_variables = ['blog_style','input_text', 'no_words'], template = template) # Generate Response from llama2 response = llm(prompt.format(blog_style = blog_style, input_text= input_text,no_words = no_words)) print(response) return(response) st.set_page_config(page_title="Generate Blogs", page_icon='🤖', layout='centered', initial_sidebar_state='collapsed') st.header("Generate Blogs 🤖") input_text=st.text_input("Enter the Blog Topic") col1,col2 = st.columns([5,5]) with col1: no_words = st.text_input('No of Words') with col2: blog_style = st.selectbox('Writing the blog for ', ('Researchers','Data Scientists','Common People'), index = 0) submit = st.button('Generate') if submit: st.write(getLlamaresponse(input_text, no_words, blog_style))