Spaces:
Running
Running
""" | |
This file provides coarse stage LETR definition | |
Modified based on https://github.com/facebookresearch/detr/blob/master/models/backbone.py | |
""" | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from .misc import (NestedTensor, nested_tensor_from_tensor_list, | |
accuracy, get_world_size, interpolate, | |
is_dist_avail_and_initialized) | |
from .backbone import build_backbone | |
from .matcher import build_matcher | |
from .transformer import build_transformer | |
from .letr_stack import LETRstack | |
import numpy as np | |
class LETR(nn.Module): | |
""" This is the LETR module that performs object detection """ | |
def __init__(self, backbone, transformer, num_classes, num_queries, args, aux_loss=False): | |
super().__init__() | |
self.num_queries = num_queries | |
self.transformer = transformer | |
hidden_dim = transformer.d_model | |
self.class_embed = nn.Linear(hidden_dim, num_classes + 1) | |
self.lines_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
self.query_embed = nn.Embedding(num_queries, hidden_dim) | |
channel = [256, 512, 1024, 2048] | |
self.input_proj = nn.Conv2d(channel[args.layer1_num], hidden_dim, kernel_size=1) | |
self.backbone = backbone | |
self.aux_loss = aux_loss | |
self.args = args | |
def forward(self, samples, postprocessors=None, targets=None, criterion=None): | |
if isinstance(samples, (list, torch.Tensor)): | |
samples = nested_tensor_from_tensor_list(samples) | |
features, pos = self.backbone(samples) | |
num = self.args.layer1_num | |
src, mask = features[num].decompose() | |
assert mask is not None | |
hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[num])[0] | |
outputs_class = self.class_embed(hs) | |
outputs_coord = self.lines_embed(hs).sigmoid() | |
out = {'pred_logits': outputs_class[-1], 'pred_lines': outputs_coord[-1]} | |
if self.aux_loss: | |
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) | |
return out | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
return [{'pred_logits': a, 'pred_lines': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] | |
class SetCriterion(nn.Module): | |
def __init__(self, num_classes, weight_dict, eos_coef, losses, args, matcher=None): | |
super().__init__() | |
self.num_classes = num_classes | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.eos_coef = eos_coef | |
self.losses = losses | |
empty_weight = torch.ones(self.num_classes + 1) | |
empty_weight[-1] = self.eos_coef | |
self.register_buffer('empty_weight', empty_weight) | |
self.args = args | |
try: | |
self.args.label_loss_params = eval(self.args.label_loss_params) # Convert the string to dict. | |
except: | |
pass | |
def loss_lines_labels(self, outputs, targets, num_items, log=False, origin_indices=None): | |
"""Classification loss (NLL) | |
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_lines] | |
""" | |
assert 'pred_logits' in outputs | |
src_logits = outputs['pred_logits'] | |
idx = self._get_src_permutation_idx(origin_indices) | |
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, origin_indices)]) | |
target_classes = torch.full(src_logits.shape[:2], self.num_classes, | |
dtype=torch.int64, device=src_logits.device) | |
target_classes[idx] = target_classes_o | |
if self.args.label_loss_func == 'cross_entropy': | |
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) | |
elif self.args.label_loss_func == 'focal_loss': | |
loss_ce = self.label_focal_loss(src_logits.transpose(1, 2), target_classes, self.empty_weight, **self.args.label_loss_params) | |
else: | |
raise ValueError() | |
losses = {'loss_ce': loss_ce} | |
return losses | |
def label_focal_loss(self, input, target, weight, gamma=2.0): | |
""" Focal loss for label prediction. """ | |
# In our case, target has 2 classes: 0 for foreground (i.e. line) and 1 for background. | |
# The weight here can serve as the alpha hyperparameter in focal loss. However, in focal loss, | |
# | |
# Ref: https://github.com/facebookresearch/DETR/blob/699bf53f3e3ecd4f000007b8473eda6a08a8bed6/models/segmentation.py#L190 | |
# Ref: https://medium.com/visionwizard/understanding-focal-loss-a-quick-read-b914422913e7 | |
# input shape: [batch size, #classes, #queries] | |
# target shape: [batch size, #queries] | |
# weight shape: [#classes] | |
prob = F.softmax(input, 1) # Shape: [batch size, #classes, #queries]. | |
ce_loss = F.cross_entropy(input, target, weight, reduction='none') # Shape: [batch size, #queries]. | |
p_t = prob[:,1,:] * target + prob[:,0,:] * (1 - target) # Shape: [batch size, #queries]. Note: prob[:,0,:] + prob[:,1,:] should be 1. | |
loss = ce_loss * ((1 - p_t) ** gamma) | |
loss = loss.mean() # Original label loss (i.e. cross entropy) does not consider the #lines, so we also do not consider that. | |
return loss | |
def loss_cardinality(self, outputs, targets, num_items, origin_indices=None): | |
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty lines | |
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients | |
""" | |
pred_logits = outputs['pred_logits'] | |
device = pred_logits.device | |
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) | |
# Count the number of predictions that are NOT "no-object" (which is the last class) | |
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) | |
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) | |
losses = {'cardinality_error': card_err} | |
return losses | |
def loss_lines_POST(self, outputs, targets, num_items, origin_indices=None): | |
assert 'POST_pred_lines' in outputs | |
if outputs['POST_pred_lines'].shape[1] == 1000: | |
idx = self._get_src_permutation_idx(origin_indices) | |
src_lines = outputs['POST_pred_lines'][idx] | |
else: | |
src_lines = outputs['POST_pred_lines'].squeeze(0) | |
target_lines = torch.cat([t['lines'][i] for t, (_, i) in zip(targets, origin_indices)], dim=0) | |
loss_line = F.l1_loss(src_lines, target_lines, reduction='none') | |
losses = {} | |
losses['loss_line'] = loss_line.sum() / num_items | |
return losses | |
def loss_lines(self, outputs, targets, num_items, origin_indices=None): | |
assert 'pred_lines' in outputs | |
idx = self._get_src_permutation_idx(origin_indices) | |
src_lines = outputs['pred_lines'][idx] | |
target_lines = torch.cat([t['lines'][i] for t, (_, i) in zip(targets, origin_indices)], dim=0) | |
loss_line = F.l1_loss(src_lines, target_lines, reduction='none') | |
losses = {} | |
losses['loss_line'] = loss_line.sum() / num_items | |
return losses | |
def _get_src_permutation_idx(self, indices): | |
# permute predictions following indices | |
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) | |
src_idx = torch.cat([src for (src, _) in indices]) | |
return batch_idx, src_idx | |
def _get_tgt_permutation_idx(self, indices): | |
# permute targets following indices | |
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) | |
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) | |
return batch_idx, tgt_idx | |
def get_loss(self, loss, outputs, targets, num_items, **kwargs): | |
loss_map = { | |
'POST_lines_labels': self.loss_lines_labels, | |
'POST_lines': self.loss_lines, | |
'lines_labels': self.loss_lines_labels, | |
'cardinality': self.loss_cardinality, | |
'lines': self.loss_lines, | |
} | |
assert loss in loss_map, f'do you really want to compute {loss} loss?' | |
return loss_map[loss](outputs, targets, num_items, **kwargs) | |
def forward(self, outputs, targets, origin_indices=None): | |
""" This performs the loss computation. | |
Parameters: | |
outputs: dict of tensors, see the output specification of the model for the format | |
targets: list of dicts, such that len(targets) == batch_size. | |
The expected keys in each dict depends on the losses applied, see each loss' doc | |
""" | |
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} | |
origin_indices = self.matcher(outputs_without_aux, targets) | |
num_items = sum(len(t["labels"]) for t in targets) | |
num_items = torch.as_tensor([num_items], dtype=torch.float, device=next(iter(outputs.values())).device) | |
if is_dist_avail_and_initialized(): | |
torch.distributed.all_reduce(num_items) | |
num_items = torch.clamp(num_items / get_world_size(), min=1).item() | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, num_items, origin_indices=origin_indices)) | |
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer. | |
aux_name = 'aux_outputs' | |
if aux_name in outputs: | |
for i, aux_outputs in enumerate(outputs[aux_name]): | |
origin_indices = self.matcher(aux_outputs, targets) | |
for loss in self.losses: | |
kwargs = {} | |
if loss == 'labels': | |
# Logging is enabled only for the last layer | |
kwargs = {'log': False} | |
l_dict = self.get_loss(loss, aux_outputs, targets, num_items, origin_indices=origin_indices, **kwargs) | |
l_dict = {k + f'_{i}': v for k, v in l_dict.items()} | |
losses.update(l_dict) | |
return losses | |
class PostProcess_Line(nn.Module): | |
""" This module converts the model's output into the format expected by the coco api""" | |
def forward(self, outputs, target_sizes, output_type): | |
""" Perform the computation | |
Parameters: | |
outputs: raw outputs of the model | |
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
For evaluation, this must be the original image size (before any data augmentation) | |
For visualization, this should be the image size after data augment, but before padding | |
""" | |
if output_type == "prediction": | |
out_logits, out_line = outputs['pred_logits'], outputs['pred_lines'] | |
assert len(out_logits) == len(target_sizes) | |
assert target_sizes.shape[1] == 2 | |
prob = F.softmax(out_logits, -1) | |
scores, labels = prob[..., :-1].max(-1) | |
# convert to [x0, y0, x1, y1] format | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
lines = out_line * scale_fct[:, None, :] | |
results = [{'scores': s, 'labels': l, 'lines': b} for s, l, b in zip(scores, labels, lines)] | |
elif output_type == "prediction_POST": | |
out_logits, out_line = outputs['pred_logits'], outputs['POST_pred_lines'] | |
assert len(out_logits) == len(target_sizes) | |
assert target_sizes.shape[1] == 2 | |
prob = F.softmax(out_logits, -1) | |
scores, labels = prob[..., :-1].max(-1) | |
# convert to [x0, y0, x1, y1] format | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
lines = out_line * scale_fct[:, None, :] | |
results = [{'scores': s, 'labels': l, 'lines': b} for s, l, b in zip(scores, labels, lines)] | |
elif output_type == "ground_truth": | |
results = [] | |
for dic in outputs: | |
lines = dic['lines'] | |
img_h, img_w = target_sizes.unbind(1) | |
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) | |
scaled_lines = lines * scale_fct | |
results.append({'labels': dic['labels'], 'lines': scaled_lines, 'image_id': dic['image_id']}) | |
else: | |
assert False | |
return results | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
def build(args): | |
num_classes = 1 | |
device = torch.device(args.device) | |
backbone = build_backbone(args) | |
transformer = build_transformer(args) | |
model = LETR( | |
backbone, | |
transformer, | |
num_classes=num_classes, | |
num_queries=args.num_queries, | |
args=args, | |
aux_loss=args.aux_loss, | |
) | |
if args.LETRpost: | |
model = LETRstack(model, args=args) | |
matcher = build_matcher(args, type='origin_line') | |
losses = [] | |
weight_dict = {} | |
if args.LETRpost: | |
losses.append('POST_lines_labels') | |
losses.append('POST_lines') | |
weight_dict['loss_ce'] = 1 | |
weight_dict['loss_line'] = args.line_loss_coef | |
aux_layer = args.second_dec_layers | |
else: | |
losses.append('lines_labels') | |
losses.append('lines') | |
weight_dict['loss_ce'] = 1 | |
weight_dict['loss_line'] = args.line_loss_coef | |
aux_layer = args.dec_layers | |
if args.aux_loss: | |
aux_weight_dict = {} | |
for i in range(aux_layer - 1): | |
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
criterion = SetCriterion(num_classes, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses, args=args, matcher=matcher) | |
criterion.to(device) | |
postprocessors = {'line': PostProcess_Line()} | |
return model, criterion, postprocessors |