artelabsuper
add utils
0d4ce65
raw
history blame contribute delete
No virus
6.92 kB
# Ke Chen
# knutchen@ucsd.edu
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
# Some Useful Common Methods
import numpy as np
import torch
import torch.nn as nn
from torch import Tensor
from typing import Optional
import logging
import os
import sys
import h5py
import csv
import time
import json
import museval
import librosa
from datetime import datetime
from tqdm import tqdm
from scipy import stats
import torch.nn as nn
import torch.nn.functional as F
# import from https://github.com/Alibaba-MIIL/ASL/blob/main/src/loss_functions/losses.py
class AsymmetricLoss(nn.Module):
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=True):
super(AsymmetricLoss, self).__init__()
self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps
def forward(self, x, y):
""""
Parameters
----------
x: input logits
y: targets (multi-label binarized vector)
"""
# Calculating Probabilities
# x_sigmoid = torch.sigmoid(x)
x_sigmoid = x # without sigmoid since it has been computed
xs_pos = x_sigmoid
xs_neg = 1 - x_sigmoid
# Asymmetric Clipping
if self.clip is not None and self.clip > 0:
xs_neg = (xs_neg + self.clip).clamp(max=1)
# Basic CE calculation
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
loss = los_pos + los_neg
# Asymmetric Focusing
if self.gamma_neg > 0 or self.gamma_pos > 0:
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(False)
pt0 = xs_pos * y
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
pt = pt0 + pt1
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
if self.disable_torch_grad_focal_loss:
torch.set_grad_enabled(True)
loss *= one_sided_w
return -loss.mean()
def get_mix_lambda(mixup_alpha, batch_size):
mixup_lambdas = [np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)]
return np.array(mixup_lambdas).astype(np.float32)
def create_folder(fd):
if not os.path.exists(fd):
os.makedirs(fd)
def dump_config(config, filename, include_time = False):
save_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
config_json = {}
for key in dir(config):
if not key.startswith("_"):
config_json[key] = eval("config." + key)
if include_time:
filename = filename + "_" + save_time
with open(filename + ".json", "w") as f:
json.dump(config_json, f ,indent=4)
def int16_to_float32(x):
return (x / 32767.).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min = -1., a_max = 1.)
return (x * 32767.).astype(np.int16)
# index for each class
def process_idc(index_path, classes_num, filename):
# load data
logging.info("Load Data...............")
idc = [[] for _ in range(classes_num)]
with h5py.File(index_path, "r") as f:
for i in tqdm(range(len(f["target"]))):
t_class = np.where(f["target"][i])[0]
for t in t_class:
idc[t].append(i)
print(idc)
np.save(filename, idc)
logging.info("Load Data Succeed...............")
def clip_bce(pred, target):
"""Binary crossentropy loss.
"""
return F.cross_entropy(pred, target)
# return F.binary_cross_entropy(pred, target)
def clip_ce(pred, target):
return F.cross_entropy(pred, target)
def d_prime(auc):
d_prime = stats.norm().ppf(auc) * np.sqrt(2.0)
return d_prime
def get_loss_func(loss_type):
if loss_type == 'clip_bce':
return clip_bce
if loss_type == 'clip_ce':
return clip_ce
if loss_type == 'asl_loss':
loss_func = AsymmetricLoss(gamma_neg=4, gamma_pos=0,clip=0.05)
return loss_func
def do_mixup_label(x):
out = torch.logical_or(x, torch.flip(x, dims = [0])).float()
return out
def do_mixup(x, mixup_lambda):
"""
Args:
x: (batch_size , ...)
mixup_lambda: (batch_size,)
Returns:
out: (batch_size, ...)
"""
out = (x.transpose(0,-1) * mixup_lambda + torch.flip(x, dims = [0]).transpose(0,-1) * (1 - mixup_lambda)).transpose(0,-1)
return out
def interpolate(x, ratio):
"""Interpolate data in time domain. This is used to compensate the
resolution reduction in downsampling of a CNN.
Args:
x: (batch_size, time_steps, classes_num)
ratio: int, ratio to interpolate
Returns:
upsampled: (batch_size, time_steps * ratio, classes_num)
"""
(batch_size, time_steps, classes_num) = x.shape
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
return upsampled
def pad_framewise_output(framewise_output, frames_num):
"""Pad framewise_output to the same length as input frames. The pad value
is the same as the value of the last frame.
Args:
framewise_output: (batch_size, frames_num, classes_num)
frames_num: int, number of frames to pad
Outputs:
output: (batch_size, frames_num, classes_num)
"""
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
"""tensor for padding"""
output = torch.cat((framewise_output, pad), dim=1)
"""(batch_size, frames_num, classes_num)"""
return output
# set the audio into the format that can be fed into the model
# resample -> convert to mono -> output the audio
# track [n_sample, n_channel]
def prepprocess_audio(track, ofs, rfs, mono_type = "mix"):
if track.shape[-1] > 1:
# stereo
if mono_type == "mix":
track = np.transpose(track, (1,0))
track = librosa.to_mono(track)
elif mono_type == "left":
track = track[:, 0]
elif mono_type == "right":
track = track[:, 1]
else:
track = track[:, 0]
# track [n_sample]
if ofs != rfs:
track = librosa.resample(track, ofs, rfs)
return track
def init_hier_head(class_map, num_class):
class_map = np.load(class_map, allow_pickle = True)
head_weight = torch.zeros(num_class,num_class).float()
head_bias = torch.zeros(num_class).float()
for i in range(len(class_map)):
for d in class_map[i][1]:
head_weight[d][i] = 1.0
for d in class_map[i][2]:
head_weight[d][i] = 1.0 / len(class_map[i][2])
head_weight[i][i] = 1.0
return head_weight, head_bias