EfficientSAM / app.py
yunyangx's picture
make some updates
bc658ea
raw
history blame
13.4 kB
import copy
import os # noqa
import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw
from torchvision.transforms import ToTensor
from utils.tools import format_results, point_prompt
from utils.tools_gradio import fast_process
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Thanks for AN-619.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
gpu_checkpoint_path = "efficientsam_s_gpu.jit"
cpu_checkpoint_path = "efficientsam_s_cpu.jit"
if torch.cuda.is_available():
model = torch.jit.load(gpu_checkpoint_path)
else:
model = torch.jit.load(cpu_checkpoint_path)
model.eval()
# Description
title = "<center><strong><font size='8'>Efficient Segment Anything(EfficientSAM)<font></strong></center>"
description_e = """This is a demo of [Efficient Segment Anything(EfficientSAM) Model](https://github.com/yformer/EfficientSAM).
"""
description_p = """# Interactive Instance Segmentation
- Point-prompt instruction
<ol>
<li> Click on the left image (point input), visualizing the point on the right image </li>
<li> Click the button of Segment with Point Prompt </li>
</ol>
- Box-prompt instruction
<ol>
<li> Click on the left image (one point input), visualizing the point on the right image </li>
<li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
<li> Click the button of Segment with Box Prompt </li>
</ol>
- Github [link](https://github.com/yformer/EfficientSAM)
"""
# examples
examples = [
["examples/image1.jpg"],
["examples/image2.jpg"],
["examples/image3.jpg"],
["examples/image4.jpg"],
["examples/image5.jpg"],
["examples/image6.jpg"],
["examples/image7.jpg"],
["examples/image8.jpg"],
["examples/image9.jpg"],
["examples/image10.jpg"],
["examples/image11.jpg"],
["examples/image12.jpg"],
["examples/image13.jpg"],
["examples/image14.jpg"],
]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_with_boxs(
image,
seg_image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
try:
global global_points
global global_point_label
if len(global_points) < 2:
return seg_image
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_points = scaled_points[:2]
scaled_point_label = np.array(global_point_label)[:2]
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
print(img_tensor.shape)
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
pts_sampled = pts_sampled[:, :, :2, :]
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
predicted_logits, predicted_iou = model(
img_tensor[None, ...].to(device),
pts_sampled.to(device),
pts_labels.to(device),
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
max_predicted_iou = -1
selected_mask_using_predicted_iou = None
selected_predicted_iou = None
for m in range(all_masks.shape[0]):
curr_predicted_iou = predicted_iou[m]
if (
curr_predicted_iou > max_predicted_iou
or selected_mask_using_predicted_iou is None
):
max_predicted_iou = curr_predicted_iou
selected_mask_using_predicted_iou = all_masks[m : m + 1]
selected_predicted_iou = predicted_iou[m : m + 1]
results = format_results(
selected_mask_using_predicted_iou,
selected_predicted_iou,
predicted_logits,
0,
)
annotations = results[0]["segmentation"]
annotations = np.array([annotations])
print(scaled_points.shape)
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
use_retina=use_retina,
bbox=scaled_points.reshape([4]),
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig
except:
return image
def segment_with_points(
image,
input_size=1024,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
try:
global global_points
global global_point_label
print("Original Image : ", image.size)
input_size = int(input_size)
w, h = image.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h))
print("Scaled Image : ", image.size)
print("Scale : ", scale)
if global_points is None:
return image
if len(global_points) < 1:
return image
scaled_points = np.array(
[[int(x * scale) for x in point] for point in global_points]
)
scaled_point_label = np.array(global_point_label)
print(scaled_points, scaled_points is not None)
print(scaled_point_label, scaled_point_label is not None)
if scaled_points.size == 0 and scaled_point_label.size == 0:
print("No points selected")
return image
nd_image = np.array(image)
img_tensor = ToTensor()(nd_image)
print(img_tensor.shape)
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])
predicted_logits, predicted_iou = model(
img_tensor[None, ...].to(device),
pts_sampled.to(device),
pts_labels.to(device),
)
predicted_logits = predicted_logits.cpu()
all_masks = torch.ge(
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
).numpy()
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
results = format_results(all_masks, predicted_iou, predicted_logits, 0)
annotations, _ = point_prompt(
results, scaled_points, scaled_point_label, new_h, new_w
)
annotations = np.array([annotations])
fig = fast_process(
annotations=annotations,
image=image,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
points=scaled_points,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
global_points = []
global_point_label = []
# return fig, None
return fig
except:
return image
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
global global_points
global global_point_label
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[
(x - point_radius, y - point_radius),
(x + point_radius, y + point_radius),
],
fill=point_color,
)
return image
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
global global_points
global global_point_label
if len(global_points) == 0:
image = copy.deepcopy(cond_image)
if len(global_points) > 2:
return image
x, y = evt.index[0], evt.index[1]
label = "Add Mask"
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
255,
0,
255,
)
global_points.append([x, y])
global_point_label.append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
if image is not None:
draw = ImageDraw.Draw(image)
draw.ellipse(
[
(x - point_radius, y - point_radius),
(x + point_radius, y + point_radius),
],
fill=point_color,
)
if len(global_points) == 2:
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2:
draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
else:
draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
global_points = global_points[::-1]
global_point_label = global_point_label[::-1]
return image
cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")
segm_img_p = gr.Image(
label="Segmented Image with Point-Prompt", interactive=False, type="pil"
)
segm_img_b = gr.Image(
label="Segmented Image with Box-Prompt", interactive=False, type="pil"
)
global_points = []
global_point_label = []
input_size_slider = gr.components.Slider(
minimum=512,
maximum=1024,
value=1024,
step=64,
label="Input_size",
info="Our model was trained on a size of 1024",
)
with gr.Blocks(css=css, title="Efficient SAM") as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
# ###
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_p = gr.Button(
"Segment with Point Prompt", variant="primary"
)
clear_btn_p = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
with gr.Tab("Box mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Column():
segment_btn_b = gr.Button(
"Segment with Box Prompt", variant="primary"
)
clear_btn_b = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_b],
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [segm_img_p, cond_img_p], segm_img_p)
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
segment_btn_p.click(segment_with_points, inputs=[cond_img_p], outputs=segm_img_p)
segment_btn_b.click(
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
)
def clear():
return None, None
def clear_text():
return None, None, None
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b])
demo.queue()
demo.launch(share=True)