Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,48 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from tensorflow.keras.preprocessing.text import Tokenizer
|
4 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
5 |
-
import numpy as np
|
6 |
from transformers import logging
|
7 |
|
8 |
# Hugging Face Transformers kütüphanesinden gelen hataları kapat
|
9 |
logging.set_verbosity_error()
|
10 |
|
11 |
-
# Streamlit başlık
|
12 |
-
st.title('Chat with Me')
|
13 |
|
14 |
-
|
15 |
model = load_model('text_classification_model.h5')
|
16 |
|
17 |
-
# Modelin giriş boyutunu öğrenme
|
18 |
-
model_input_shape = model.layers[0].input_shape
|
19 |
-
if isinstance(model_input_shape, list):
|
20 |
-
model_input_shape = model_input_shape[0]
|
21 |
-
input_length = model_input_shape[1]
|
22 |
-
|
23 |
-
# Tokenizer yükleme veya tanımlama
|
24 |
-
tokenizer = Tokenizer(num_words=10000) # num_words, kelime sayısı limitidir, modelinize göre ayarlayabilirsiniz
|
25 |
-
tokenizer.fit_on_texts(['örnek metin']) # Tokenizer'ı eğitmek için örnek bir metin kullanabilirsiniz
|
26 |
-
|
27 |
# Chat history
|
28 |
-
if '
|
29 |
-
st.session_state.
|
30 |
|
31 |
-
#
|
32 |
soru = st.text_input('Sor:')
|
33 |
|
34 |
-
#
|
35 |
-
def
|
36 |
-
|
37 |
-
sequences = tokenizer.texts_to_sequences([input_text])
|
38 |
-
padded_sequences = pad_sequences(sequences, maxlen=input_length) # maxlen, modelin beklediği giriş boyutuna göre ayarlanmalıdır
|
39 |
-
prediction = model.predict(padded_sequences)
|
40 |
-
response = "Bu bir örnek yanıttır." # Modelden gelen yanıtı buraya yazın
|
41 |
-
return response
|
42 |
|
43 |
-
# "Sor"
|
44 |
if st.button('Sor'):
|
45 |
if soru:
|
46 |
-
response =
|
47 |
-
st.session_state.
|
48 |
-
st.session_state.
|
|
|
|
|
49 |
st.experimental_rerun()
|
50 |
|
51 |
-
#
|
52 |
-
for message in reversed(st.session_state.
|
53 |
-
if message
|
54 |
st.markdown(f'<div style="text-align: right; background-color: #2F2F2F; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">👤 Sen: {message["text"]}</div>', unsafe_allow_html=True)
|
55 |
-
elif message
|
56 |
st.markdown(f'<div style="text-align: left; background-color: #2E2E2E; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">🤖 Bot: {message["text"]}</div>', unsafe_allow_html=True)
|
57 |
|
58 |
-
# "Yeni Sohbet"
|
59 |
if st.button('Yeni Sohbet'):
|
60 |
-
st.session_state.
|
61 |
-
st.
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
import streamlit as st
|
5 |
+
import google.generativeai as genai
|
|
|
|
|
|
|
6 |
from transformers import logging
|
7 |
|
8 |
# Hugging Face Transformers kütüphanesinden gelen hataları kapat
|
9 |
logging.set_verbosity_error()
|
10 |
|
|
|
|
|
11 |
|
12 |
+
st.title('Chat with Me')
|
13 |
model = load_model('text_classification_model.h5')
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Chat history
|
16 |
+
if 'chat' not in st.session_state:
|
17 |
+
st.session_state.chat = model.start_chat(history=[])
|
18 |
|
19 |
+
# Input for user question
|
20 |
soru = st.text_input('Sor:')
|
21 |
|
22 |
+
# Function to extract text parts from the response
|
23 |
+
def extract_text(response_parts):
|
24 |
+
return response_parts[0].text.strip() if response_parts[0].text else ""
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Handle "Sor" button click
|
27 |
if st.button('Sor'):
|
28 |
if soru:
|
29 |
+
response = st.session_state.chat.send_message(soru)
|
30 |
+
st.session_state.chat.history.append({'role': 'model', 'text': extract_text(response.parts)})
|
31 |
+
st.session_state.chat.history.append({'role': 'user', 'text': soru})
|
32 |
+
st.session_state.last_question = soru
|
33 |
+
st.session_state.last_response = extract_text(response.parts)
|
34 |
st.experimental_rerun()
|
35 |
|
36 |
+
# Display chat history
|
37 |
+
for message in reversed(st.session_state.chat.history):
|
38 |
+
if message.role == 'user':
|
39 |
st.markdown(f'<div style="text-align: right; background-color: #2F2F2F; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">👤 Sen: {message["text"]}</div>', unsafe_allow_html=True)
|
40 |
+
elif message.role == 'model':
|
41 |
st.markdown(f'<div style="text-align: left; background-color: #2E2E2E; padding: 10px; border-radius: 10px; margin: 10px; width: fit-content;">🤖 Bot: {message["text"]}</div>', unsafe_allow_html=True)
|
42 |
|
43 |
+
# Handle "Yeni Sohbet" button click
|
44 |
if st.button('Yeni Sohbet'):
|
45 |
+
st.session_state.chat = model.start_chat(history=[])
|
46 |
+
st.session_state.last_question = ''
|
47 |
+
st.session_state.last_response = ''
|
48 |
+
st.experimental_rerun()
|