Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,9 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import spaces
|
4 |
from diffusers import FluxInpaintPipeline
|
5 |
-
from PIL import Image
|
6 |
-
import io
|
7 |
-
import numpy as np
|
8 |
|
9 |
-
|
10 |
-
# ImageFile.LOAD_TRUNCATED_IMAGES = True
|
11 |
|
12 |
# Initialize the pipeline
|
13 |
pipe = FluxInpaintPipeline.from_pretrained(
|
@@ -20,153 +17,64 @@ pipe.load_lora_weights(
|
|
20 |
weight_name="visual-identity-design.safetensors"
|
21 |
)
|
22 |
|
23 |
-
def safe_open_image(image):
|
24 |
-
"""Safely open and validate image"""
|
25 |
-
try:
|
26 |
-
if isinstance(image, np.ndarray):
|
27 |
-
# Convert numpy array to PIL Image
|
28 |
-
image = Image.fromarray(image)
|
29 |
-
elif isinstance(image, bytes):
|
30 |
-
# Handle bytes input
|
31 |
-
image = Image.open(io.BytesIO(image))
|
32 |
-
|
33 |
-
# Ensure the image is in RGB mode
|
34 |
-
if image.mode != 'RGB':
|
35 |
-
image = image.convert('RGB')
|
36 |
-
|
37 |
-
return image
|
38 |
-
except Exception as e:
|
39 |
-
raise ValueError(f"Error processing input image: {str(e)}")
|
40 |
-
|
41 |
def square_center_crop(img, target_size=768):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
top = max(0, (height - crop_size) // 2)
|
56 |
-
right = min(width, left + crop_size)
|
57 |
-
bottom = min(height, top + crop_size)
|
58 |
-
|
59 |
-
img_cropped = img.crop((left, top, right, bottom))
|
60 |
-
|
61 |
-
# Use high-quality resizing
|
62 |
-
return img_cropped.resize(
|
63 |
-
(target_size, target_size),
|
64 |
-
Image.Resampling.LANCZOS,
|
65 |
-
reducing_gap=3.0
|
66 |
-
)
|
67 |
-
except Exception as e:
|
68 |
-
raise ValueError(f"Error during image cropping: {str(e)}")
|
69 |
|
70 |
def duplicate_horizontally(img):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
img = img.convert('RGB')
|
83 |
-
|
84 |
-
new_image.paste(img, (0, 0))
|
85 |
-
new_image.paste(img, (width, 0))
|
86 |
-
|
87 |
-
return new_image
|
88 |
-
except Exception as e:
|
89 |
-
raise ValueError(f"Error during image duplication: {str(e)}")
|
90 |
-
|
91 |
-
def safe_crop_output(img):
|
92 |
-
"""Safely crop the output image"""
|
93 |
-
try:
|
94 |
-
width, height = img.size
|
95 |
-
half_width = width // 2
|
96 |
-
return img.crop((half_width, 0, width, height))
|
97 |
-
except Exception as e:
|
98 |
-
raise ValueError(f"Error cropping output image: {str(e)}")
|
99 |
-
|
100 |
-
# Load the mask image with error handling
|
101 |
-
try:
|
102 |
-
mask = Image.open("mask_square.png")
|
103 |
-
if mask.mode != 'RGB':
|
104 |
-
mask = mask.convert('RGB')
|
105 |
-
except Exception as e:
|
106 |
-
raise RuntimeError(f"Error loading mask image: {str(e)}")
|
107 |
|
108 |
@spaces.GPU
|
109 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
110 |
-
"
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
except Exception as e:
|
135 |
-
error_message = f"Error during duplication: {str(e)}"
|
136 |
-
print(error_message) # For logging
|
137 |
-
raise gr.Error(error_message)
|
138 |
-
yield debug_resize, debug_duplicate, None, None
|
139 |
-
print("just before getting into pipe")
|
140 |
-
# Generate output
|
141 |
-
out = pipe(
|
142 |
-
prompt=prompt,
|
143 |
-
image=logo_dupli,
|
144 |
-
mask_image=mask,
|
145 |
-
guidance_scale=6,
|
146 |
-
height=768,
|
147 |
-
width=1536,
|
148 |
-
num_inference_steps=28,
|
149 |
-
max_sequence_length=256,
|
150 |
-
strength=1
|
151 |
-
).images[0]
|
152 |
-
|
153 |
-
# First yield for progress
|
154 |
-
yield debug_resize, debug_duplicate, out, None
|
155 |
-
|
156 |
-
# Process and return final output
|
157 |
-
image_2 = safe_crop_output(out)
|
158 |
-
yield debug_resize, debug_duplicate, out, image_2
|
159 |
-
|
160 |
-
except Exception as e:
|
161 |
-
error_message = f"Error during generation: {str(e)}"
|
162 |
-
print(error_message) # For logging
|
163 |
-
raise gr.Error(error_message)
|
164 |
-
|
165 |
-
# Create the Gradio interface
|
166 |
with gr.Blocks() as demo:
|
167 |
gr.Markdown("# Logo in Context")
|
168 |
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
|
169 |
-
|
170 |
with gr.Row():
|
171 |
with gr.Column():
|
172 |
input_image = gr.Image(
|
@@ -180,37 +88,27 @@ with gr.Blocks() as demo:
|
|
180 |
lines=2
|
181 |
)
|
182 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
183 |
-
|
184 |
with gr.Column():
|
185 |
-
output_image = gr.Image(
|
186 |
-
|
187 |
-
type="pil"
|
188 |
-
)
|
189 |
-
output_side = gr.Image(
|
190 |
-
label="Side by side",
|
191 |
-
type="pil"
|
192 |
-
)
|
193 |
-
debug_resize = gr.Image()
|
194 |
-
debug_duplicate = gr.Image()
|
195 |
-
|
196 |
with gr.Row():
|
197 |
gr.Markdown("""
|
198 |
### Instructions:
|
199 |
1. Upload a logo image (preferably square)
|
200 |
2. Describe where you'd like to see the logo applied
|
201 |
3. Click 'Generate Application' and wait for the result
|
202 |
-
|
203 |
Note: The generation process might take a few moments.
|
204 |
""")
|
205 |
-
|
206 |
-
# Set up the click event
|
207 |
generate_btn.click(
|
208 |
fn=generate,
|
209 |
inputs=[input_image, prompt_input],
|
210 |
-
outputs=[
|
211 |
-
api_name="generate"
|
212 |
)
|
213 |
|
214 |
# Launch the interface
|
215 |
-
if
|
216 |
demo.launch()
|
|
|
2 |
import torch
|
3 |
import spaces
|
4 |
from diffusers import FluxInpaintPipeline
|
5 |
+
from PIL import Image, ImageFile
|
|
|
|
|
6 |
|
7 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
8 |
|
9 |
# Initialize the pipeline
|
10 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
|
17 |
weight_name="visual-identity-design.safetensors"
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def square_center_crop(img, target_size=768):
|
21 |
+
if img.mode in ('RGBA', 'P'):
|
22 |
+
img = img.convert('RGB')
|
23 |
+
|
24 |
+
width, height = img.size
|
25 |
+
crop_size = min(width, height)
|
26 |
+
|
27 |
+
left = (width - crop_size) // 2
|
28 |
+
top = (height - crop_size) // 2
|
29 |
+
right = left + crop_size
|
30 |
+
bottom = top + crop_size
|
31 |
+
|
32 |
+
img_cropped = img.crop((left, top, right, bottom))
|
33 |
+
return img_cropped.resize((target_size, target_size), Image.Resampling.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def duplicate_horizontally(img):
|
36 |
+
width, height = img.size
|
37 |
+
if width != height:
|
38 |
+
raise ValueError(f"Input image must be square, got {width}x{height}")
|
39 |
+
|
40 |
+
new_image = Image.new('RGB', (width * 2, height))
|
41 |
+
new_image.paste(img, (0, 0))
|
42 |
+
new_image.paste(img, (width, 0))
|
43 |
+
return new_image
|
44 |
+
|
45 |
+
# Load the mask image
|
46 |
+
mask = Image.open("mask_square.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
@spaces.GPU
|
49 |
def generate(image, prompt_user, progress=gr.Progress(track_tqdm=True)):
|
50 |
+
prompt_structure = "The two-panel image showcases the logo of a brand, [LEFT] the left panel is showing the logo [RIGHT] the right panel has this logo applied to "
|
51 |
+
prompt = prompt_structure + prompt_user
|
52 |
+
|
53 |
+
cropped_image = square_center_crop(image)
|
54 |
+
logo_dupli = duplicate_horizontally(cropped_image)
|
55 |
+
|
56 |
+
out = pipe(
|
57 |
+
prompt=prompt,
|
58 |
+
image=logo_dupli,
|
59 |
+
mask_image=mask,
|
60 |
+
guidance_scale=6,
|
61 |
+
height=768,
|
62 |
+
width=1536,
|
63 |
+
num_inference_steps=28,
|
64 |
+
max_sequence_length=256,
|
65 |
+
strength=1
|
66 |
+
).images[0]
|
67 |
+
|
68 |
+
yield None, out
|
69 |
+
width, height = out.size
|
70 |
+
half_width = width // 2
|
71 |
+
image_2 = out.crop((half_width, 0, width, height))
|
72 |
+
yield image_2, out
|
73 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Blocks() as demo:
|
75 |
gr.Markdown("# Logo in Context")
|
76 |
gr.Markdown("### In-Context LoRA + Image-to-Image, apply your logo to anything")
|
77 |
+
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
input_image = gr.Image(
|
|
|
88 |
lines=2
|
89 |
)
|
90 |
generate_btn = gr.Button("Generate Application", variant="primary")
|
91 |
+
|
92 |
with gr.Column():
|
93 |
+
output_image = gr.Image(label="Generated Application")
|
94 |
+
output_side = gr.Image(label="Side by side")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
with gr.Row():
|
96 |
gr.Markdown("""
|
97 |
### Instructions:
|
98 |
1. Upload a logo image (preferably square)
|
99 |
2. Describe where you'd like to see the logo applied
|
100 |
3. Click 'Generate Application' and wait for the result
|
101 |
+
|
102 |
Note: The generation process might take a few moments.
|
103 |
""")
|
104 |
+
|
105 |
+
# Set up the click event
|
106 |
generate_btn.click(
|
107 |
fn=generate,
|
108 |
inputs=[input_image, prompt_input],
|
109 |
+
outputs=[output_image, output_side]
|
|
|
110 |
)
|
111 |
|
112 |
# Launch the interface
|
113 |
+
if name == "main":
|
114 |
demo.launch()
|