Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.cuda.amp as amp | |
import torch.nn as nn | |
from zoedepth.trainers.loss import GradL1Loss, SILogLoss | |
from zoedepth.utils.config import DATASETS_CONFIG | |
from zoedepth.utils.misc import compute_metrics | |
from .base_trainer import BaseTrainer | |
class Trainer(BaseTrainer): | |
def __init__(self, config, model, train_loader, test_loader=None, device=None): | |
super().__init__(config, model, train_loader, | |
test_loader=test_loader, device=device) | |
self.device = device | |
self.silog_loss = SILogLoss() | |
self.grad_loss = GradL1Loss() | |
self.domain_classifier_loss = nn.CrossEntropyLoss() | |
self.scaler = amp.GradScaler(enabled=self.config.use_amp) | |
def train_on_batch(self, batch, train_step): | |
""" | |
Expects a batch of images and depth as input | |
batch["image"].shape : batch_size, c, h, w | |
batch["depth"].shape : batch_size, 1, h, w | |
Assumes all images in a batch are from the same dataset | |
""" | |
images, depths_gt = batch['image'].to( | |
self.device), batch['depth'].to(self.device) | |
# batch['dataset'] is a tensor strings all valued either 'nyu' or 'kitti'. labels nyu -> 0, kitti -> 1 | |
dataset = batch['dataset'][0] | |
# Convert to 0s or 1s | |
domain_labels = torch.Tensor([dataset == 'kitti' for _ in range( | |
images.size(0))]).to(torch.long).to(self.device) | |
# m = self.model.module if self.config.multigpu else self.model | |
b, c, h, w = images.size() | |
mask = batch["mask"].to(self.device).to(torch.bool) | |
losses = {} | |
with amp.autocast(enabled=self.config.use_amp): | |
output = self.model(images) | |
pred_depths = output['metric_depth'] | |
domain_logits = output['domain_logits'] | |
l_si, pred = self.silog_loss( | |
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True) | |
loss = self.config.w_si * l_si | |
losses[self.silog_loss.name] = l_si | |
if self.config.w_grad > 0: | |
l_grad = self.grad_loss(pred, depths_gt, mask=mask) | |
loss = loss + self.config.w_grad * l_grad | |
losses[self.grad_loss.name] = l_grad | |
else: | |
l_grad = torch.Tensor([0]) | |
if self.config.w_domain > 0: | |
l_domain = self.domain_classifier_loss( | |
domain_logits, domain_labels) | |
loss = loss + self.config.w_domain * l_domain | |
losses["DomainLoss"] = l_domain | |
else: | |
l_domain = torch.Tensor([0.]) | |
self.scaler.scale(loss).backward() | |
if self.config.clip_grad > 0: | |
self.scaler.unscale_(self.optimizer) | |
nn.utils.clip_grad_norm_( | |
self.model.parameters(), self.config.clip_grad) | |
self.scaler.step(self.optimizer) | |
if self.should_log and self.step > 1 and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0: | |
depths_gt[torch.logical_not(mask)] = -99 | |
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train", | |
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) | |
self.scaler.update() | |
self.optimizer.zero_grad(set_to_none=True) | |
return losses | |
def validate_on_batch(self, batch, val_step): | |
images = batch['image'].to(self.device) | |
depths_gt = batch['depth'].to(self.device) | |
dataset = batch['dataset'][0] | |
if 'has_valid_depth' in batch: | |
if not batch['has_valid_depth']: | |
return None, None | |
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0) | |
with amp.autocast(enabled=self.config.use_amp): | |
m = self.model.module if self.config.multigpu else self.model | |
pred_depths = m(images)["metric_depth"] | |
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0) | |
mask = torch.logical_and( | |
depths_gt > self.config.min_depth, depths_gt < self.config.max_depth) | |
with amp.autocast(enabled=self.config.use_amp): | |
l_depth = self.silog_loss( | |
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True) | |
metrics = compute_metrics(depths_gt, pred_depths, **self.config) | |
losses = {f"{self.silog_loss.name}": l_depth.item()} | |
if val_step == 1 and self.should_log: | |
depths_gt[torch.logical_not(mask)] = -99 | |
self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test", | |
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth']) | |
return metrics, losses | |