Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import torch | |
import torch.nn as nn | |
class SeedBinRegressor(nn.Module): | |
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): | |
"""Bin center regressor network. Bin centers are bounded on (min_depth, max_depth) interval. | |
Args: | |
in_features (int): input channels | |
n_bins (int, optional): Number of bin centers. Defaults to 16. | |
mlp_dim (int, optional): Hidden dimension. Defaults to 256. | |
min_depth (float, optional): Min depth value. Defaults to 1e-3. | |
max_depth (float, optional): Max depth value. Defaults to 10. | |
""" | |
super().__init__() | |
self.version = "1_1" | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x): | |
""" | |
Returns tensor of bin_width vectors (centers). One vector b for every pixel | |
""" | |
B = self._net(x) | |
eps = 1e-3 | |
B = B + eps | |
B_widths_normed = B / B.sum(dim=1, keepdim=True) | |
B_widths = (self.max_depth - self.min_depth) * \ | |
B_widths_normed # .shape NCHW | |
# pad has the form (left, right, top, bottom, front, back) | |
B_widths = nn.functional.pad( | |
B_widths, (0, 0, 0, 0, 1, 0), mode='constant', value=self.min_depth) | |
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW | |
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:, 1:, ...]) | |
return B_widths_normed, B_centers | |
class SeedBinRegressorUnnormed(nn.Module): | |
def __init__(self, in_features, n_bins=16, mlp_dim=256, min_depth=1e-3, max_depth=10): | |
"""Bin center regressor network. Bin centers are unbounded | |
Args: | |
in_features (int): input channels | |
n_bins (int, optional): Number of bin centers. Defaults to 16. | |
mlp_dim (int, optional): Hidden dimension. Defaults to 256. | |
min_depth (float, optional): Not used. (for compatibility with SeedBinRegressor) | |
max_depth (float, optional): Not used. (for compatibility with SeedBinRegressor) | |
""" | |
super().__init__() | |
self.version = "1_1" | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mlp_dim, n_bins, 1, 1, 0), | |
nn.Softplus() | |
) | |
def forward(self, x): | |
""" | |
Returns tensor of bin_width vectors (centers). One vector b for every pixel | |
""" | |
B_centers = self._net(x) | |
return B_centers, B_centers | |
class Projector(nn.Module): | |
def __init__(self, in_features, out_features, mlp_dim=128): | |
"""Projector MLP | |
Args: | |
in_features (int): input channels | |
out_features (int): output channels | |
mlp_dim (int, optional): hidden dimension. Defaults to 128. | |
""" | |
super().__init__() | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(mlp_dim, out_features, 1, 1, 0), | |
) | |
def forward(self, x): | |
return self._net(x) | |
class LinearSplitter(nn.Module): | |
def __init__(self, in_features, prev_nbins, split_factor=2, mlp_dim=128, min_depth=1e-3, max_depth=10): | |
super().__init__() | |
self.prev_nbins = prev_nbins | |
self.split_factor = split_factor | |
self.min_depth = min_depth | |
self.max_depth = max_depth | |
self._net = nn.Sequential( | |
nn.Conv2d(in_features, mlp_dim, 1, 1, 0), | |
nn.GELU(), | |
nn.Conv2d(mlp_dim, prev_nbins * split_factor, 1, 1, 0), | |
nn.ReLU() | |
) | |
def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False): | |
""" | |
x : feature block; shape - n, c, h, w | |
b_prev : previous bin widths normed; shape - n, prev_nbins, h, w | |
""" | |
if prev_b_embedding is not None: | |
if interpolate: | |
prev_b_embedding = nn.functional.interpolate(prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True) | |
x = x + prev_b_embedding | |
S = self._net(x) | |
eps = 1e-3 | |
S = S + eps | |
n, c, h, w = S.shape | |
S = S.view(n, self.prev_nbins, self.split_factor, h, w) | |
S_normed = S / S.sum(dim=2, keepdim=True) # fractional splits | |
b_prev = nn.functional.interpolate(b_prev, (h,w), mode='bilinear', align_corners=True) | |
b_prev = b_prev / b_prev.sum(dim=1, keepdim=True) # renormalize for gurantees | |
# print(b_prev.shape, S_normed.shape) | |
# if is_for_query:(1).expand(-1, b_prev.size(0)//n, -1, -1, -1, -1).flatten(0,1) # TODO ? can replace all this with a single torch.repeat? | |
b = b_prev.unsqueeze(2) * S_normed | |
b = b.flatten(1,2) # .shape n, prev_nbins * split_factor, h, w | |
# calculate bin centers for loss calculation | |
B_widths = (self.max_depth - self.min_depth) * b # .shape N, nprev * splitfactor, H, W | |
# pad has the form (left, right, top, bottom, front, back) | |
B_widths = nn.functional.pad(B_widths, (0,0,0,0,1,0), mode='constant', value=self.min_depth) | |
B_edges = torch.cumsum(B_widths, dim=1) # .shape NCHW | |
B_centers = 0.5 * (B_edges[:, :-1, ...] + B_edges[:,1:,...]) | |
return b, B_centers |