Spaces:
Running
on
Zero
Running
on
Zero
# MIT License | |
# Copyright (c) 2022 Intelligent Systems Lab Org | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# File author: Shariq Farooq Bhat | |
import os | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision import transforms as T | |
class iBims(Dataset): | |
def __init__(self, config): | |
root_folder = config.ibims_root | |
with open(os.path.join(root_folder, "imagelist.txt"), 'r') as f: | |
imglist = f.read().split() | |
samples = [] | |
for basename in imglist: | |
img_path = os.path.join(root_folder, 'rgb', basename + ".png") | |
depth_path = os.path.join(root_folder, 'depth', basename + ".png") | |
valid_mask_path = os.path.join( | |
root_folder, 'mask_invalid', basename+".png") | |
transp_mask_path = os.path.join( | |
root_folder, 'mask_transp', basename+".png") | |
samples.append( | |
(img_path, depth_path, valid_mask_path, transp_mask_path)) | |
self.samples = samples | |
# self.normalize = T.Normalize( | |
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
self.normalize = lambda x : x | |
def __getitem__(self, idx): | |
img_path, depth_path, valid_mask_path, transp_mask_path = self.samples[idx] | |
img = np.asarray(Image.open(img_path), dtype=np.float32) / 255.0 | |
depth = np.asarray(Image.open(depth_path), | |
dtype=np.uint16).astype('float')*50.0/65535 | |
mask_valid = np.asarray(Image.open(valid_mask_path)) | |
mask_transp = np.asarray(Image.open(transp_mask_path)) | |
# depth = depth * mask_valid * mask_transp | |
depth = np.where(mask_valid * mask_transp, depth, -1) | |
img = torch.from_numpy(img).permute(2, 0, 1) | |
img = self.normalize(img) | |
depth = torch.from_numpy(depth).unsqueeze(0) | |
return dict(image=img, depth=depth, image_path=img_path, depth_path=depth_path, dataset='ibims') | |
def __len__(self): | |
return len(self.samples) | |
def get_ibims_loader(config, batch_size=1, **kwargs): | |
dataloader = DataLoader(iBims(config), batch_size=batch_size, **kwargs) | |
return dataloader | |