LN3Diff_I23D / sgm /data /cifar10.py
NIRVANALAN
init
11e6f7b
import pytorch_lightning as pl
import torchvision
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
class CIFAR10DataDictWrapper(Dataset):
def __init__(self, dset):
super().__init__()
self.dset = dset
def __getitem__(self, i):
x, y = self.dset[i]
return {"jpg": x, "cls": y}
def __len__(self):
return len(self.dset)
class CIFAR10Loader(pl.LightningDataModule):
def __init__(self, batch_size, num_workers=0, shuffle=True):
super().__init__()
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Lambda(lambda x: x * 2.0 - 1.0)]
)
self.batch_size = batch_size
self.num_workers = num_workers
self.shuffle = shuffle
self.train_dataset = CIFAR10DataDictWrapper(
torchvision.datasets.CIFAR10(
root=".data/", train=True, download=True, transform=transform
)
)
self.test_dataset = CIFAR10DataDictWrapper(
torchvision.datasets.CIFAR10(
root=".data/", train=False, download=True, transform=transform
)
)
def prepare_data(self):
pass
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)