Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
import functools | |
import json | |
import os | |
from pathlib import Path | |
from pdb import set_trace as st | |
# from PIL import Image | |
import blobfile as bf | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
import torchvision | |
from PIL import Image | |
from torch.nn.parallel.distributed import DistributedDataParallel as DDP | |
from torch.optim import AdamW | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from tqdm import tqdm | |
import matplotlib.pyplot as plt | |
from safetensors.torch import load_file | |
from guided_diffusion.gaussian_diffusion import _extract_into_tensor | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.fp16_util import MixedPrecisionTrainer | |
from guided_diffusion.nn import update_ema | |
from guided_diffusion.resample import LossAwareSampler, UniformSampler | |
# from .train_util import TrainLoop3DRec | |
from guided_diffusion.train_util import (TrainLoop, calc_average_loss, | |
find_ema_checkpoint, | |
find_resume_checkpoint, | |
get_blob_logdir, log_loss_dict, | |
log_rec3d_loss_dict, | |
parse_resume_step_from_filename) | |
import dnnlib | |
from nsr.camera_utils import FOV_to_intrinsics, LookAtPoseSampler | |
from huggingface_hub import hf_hub_download | |
# AMP | |
# from accelerate import Accelerator | |
# from ..guided_diffusion.train_util import TrainLoop | |
# use_amp = False | |
# use_amp = True | |
# Function to generate a rotation matrix for an arbitrary theta along the x-axis | |
def rotation_matrix_x(theta_degrees): | |
theta = np.radians(theta_degrees) # Convert degrees to radians | |
cos_theta = np.cos(theta) | |
sin_theta = np.sin(theta) | |
rotation_matrix = np.array([[1, 0, 0], | |
[0, cos_theta, -sin_theta], | |
[0, sin_theta, cos_theta]]) | |
return rotation_matrix | |
class TrainLoopDiffusionWithRec(TrainLoop): | |
"""an interface with rec_model required apis | |
""" | |
def __init__( | |
self, | |
*, | |
model, | |
diffusion, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
triplane_scaling_divider=1, | |
use_amp=False, | |
diffusion_input_size=224, | |
schedule_sampler=None, | |
model_name='ddpm', | |
**kwargs, | |
): | |
super().__init__( | |
model=model, | |
diffusion=diffusion, | |
data=data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
schedule_sampler=schedule_sampler, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
use_amp=use_amp, | |
model_name=model_name, | |
**kwargs, | |
) | |
self.latent_name = 'latent_normalized' # normalized triplane latent | |
self.diffusion_input_size = diffusion_input_size | |
self.render_latent_behaviour = 'triplane_dec' # directly render using triplane operations | |
self.loss_class = loss_class | |
# self.rec_model = rec_model | |
self.eval_interval = eval_interval | |
self.eval_data = eval_data | |
self.iterations = iterations | |
# self.triplane_std = 10 | |
self.triplane_scaling_divider = triplane_scaling_divider | |
if dist_util.get_rank() == 0: | |
self.writer = SummaryWriter(log_dir=f'{logger.get_dir()}/runs') | |
# def _init_optim_groups(self, rec_model): | |
# """for initializing the reconstruction model. | |
# """ | |
# kwargs = self.kwargs | |
# optim_groups = [ | |
# # vit encoder | |
# { | |
# 'name': 'vit_encoder', | |
# 'params': rec_model.encoder.parameters(), | |
# 'lr': kwargs['encoder_lr'], | |
# 'weight_decay': kwargs['encoder_weight_decay'] | |
# }, | |
# # vit decoder | |
# { | |
# 'name': 'vit_decoder', | |
# 'params': rec_model.decoder.vit_decoder.parameters(), | |
# 'lr': kwargs['vit_decoder_lr'], | |
# 'weight_decay': kwargs['vit_decoder_wd'] | |
# }, | |
# { | |
# 'name': 'vit_decoder_pred', | |
# 'params': rec_model.decoder.decoder_pred.parameters(), | |
# 'lr': kwargs['vit_decoder_lr'], | |
# # 'weight_decay': 0 | |
# 'weight_decay': kwargs['vit_decoder_wd'] | |
# }, | |
# # triplane decoder | |
# { | |
# 'name': 'triplane_decoder', | |
# 'params': rec_model.decoder.triplane_decoder.parameters(), | |
# 'lr': kwargs['triplane_decoder_lr'], | |
# # 'weight_decay': self.weight_decay | |
# }, | |
# ] | |
# if rec_model.decoder.superresolution is not None: | |
# optim_groups.append({ | |
# 'name': | |
# 'triplane_decoder_superresolution', | |
# 'params': | |
# rec_model.decoder.superresolution.parameters(), | |
# 'lr': | |
# kwargs['super_resolution_lr'], | |
# }) | |
# return optim_groups | |
def render_video_given_triplane(self, | |
planes, | |
rec_model, | |
name_prefix='0', | |
save_img=False, | |
render_reference=None, | |
export_mesh=False, | |
render_all=False, | |
mesh_size=192, | |
mesh_thres=10): | |
planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments. | |
batch_size = planes.shape[0] | |
# ! mesh | |
if planes.shape[1] == 16: # ffhq/car | |
ddpm_latent = { | |
self.latent_name: planes[:, :12], | |
'bg_plane': planes[:, 12:16], | |
} | |
else: | |
ddpm_latent = { | |
self.latent_name: planes, | |
} | |
ddpm_latent.update( | |
rec_model(latent=ddpm_latent, | |
behaviour='decode_after_vae_no_render')) | |
# if export_mesh: | |
if False: | |
import mcubes | |
import trimesh | |
dump_path = f'{logger.get_dir()}/mesh/' | |
os.makedirs(dump_path, exist_ok=True) | |
grid_out = rec_model( | |
latent=ddpm_latent, | |
grid_size=mesh_size, | |
behaviour='triplane_decode_grid', | |
) | |
vtx, faces = mcubes.marching_cubes( | |
grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), | |
mesh_thres) | |
# st() | |
vtx = vtx / (mesh_size - 1) * 2 - 1 | |
vtx = vtx * 0.45 # g-objaverse scale | |
vtx_tensor = th.tensor(vtx, dtype=th.float32, device=dist_util.dev()).unsqueeze(0) | |
vtx_colors = rec_model.decoder.forward_points(ddpm_latent['latent_after_vit'], vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() # (0, 1) | |
vtx_colors = (vtx_colors.clip(0,1) * 255).astype(np.uint8) | |
# rotate mesh along x dim | |
vtx = np.transpose(rotation_matrix_x(-90) @ np.transpose(vtx)) | |
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) | |
# st() | |
# mesh = trimesh.Trimesh( | |
# vertices=vtx, | |
# faces=faces, | |
# ) | |
mesh_dump_path = os.path.join(dump_path, f'{name_prefix}.obj') | |
mesh.export(mesh_dump_path, 'obj') | |
logger.log(f"Mesh dumped to {mesh_dump_path}") | |
del grid_out, mesh | |
th.cuda.empty_cache() | |
# return | |
vid_dump_path = f'{logger.get_dir()}/triplane_{name_prefix}.mp4' | |
video_out = imageio.get_writer( | |
vid_dump_path, | |
mode='I', | |
fps=15, | |
codec='libx264') | |
if planes.shape[1] == 16: # ffhq/car | |
ddpm_latent = { | |
self.latent_name: planes[:, :12], | |
'bg_plane': planes[:, 12:16], | |
} | |
else: | |
ddpm_latent = { | |
self.latent_name: planes, | |
} | |
ddpm_latent.update( | |
rec_model(latent=ddpm_latent, | |
behaviour='decode_after_vae_no_render')) | |
if render_reference is None: | |
render_reference = self.eval_data # compat | |
else: # use train_traj | |
for key in ['ins', 'bbox', 'caption']: | |
if key in render_reference: | |
render_reference.pop(key) | |
# compat lst for enumerate | |
if render_all: # render 50 or 250 views, for shapenet | |
render_reference = [{ | |
k: v[idx:idx + 1] | |
for k, v in render_reference.items() | |
} for idx in range(render_reference['c'].shape[0])] | |
else: | |
render_reference = [{ | |
k: v[idx:idx + 1] | |
for k, v in render_reference.items() | |
} for idx in range(40)] | |
# for i, batch in enumerate(tqdm(self.eval_data)): | |
for i, batch in enumerate(tqdm(render_reference)): | |
micro = { | |
k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
for k, v in batch.items() | |
} | |
pred = rec_model( | |
img=None, | |
c=micro['c'], | |
latent=ddpm_latent, | |
behaviour='triplane_dec') | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
# save viridis_r depth | |
pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy() | |
pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1 | |
pred_depth = th.from_numpy(pred_depth).to( | |
pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0) | |
if 'image_sr' in pred: | |
gen_img = pred['image_sr'] | |
if pred['image_sr'].shape[-1] == 512: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_512(pred['image_raw']), gen_img, | |
self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
elif pred['image_sr'].shape[-1] == 128: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_128(pred['image_raw']), pred['image_sr'], | |
self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
else: | |
gen_img = pred['image_raw'] | |
pred_vis = th.cat( | |
[ | |
gen_img, | |
pred_depth | |
], | |
dim=-1) # B, 3, H, W | |
if save_img: | |
for batch_idx in range(gen_img.shape[0]): | |
sampled_img = Image.fromarray( | |
(gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() * | |
127.5 + 127.5).clip(0, 255).astype(np.uint8)) | |
# if sampled_img.size != (512, 512): | |
# sampled_img = sampled_img.resize( | |
# (128, 128), Image.HAMMING) # for shapenet | |
sampled_img.save(logger.get_dir() + | |
'/FID_Cals/{}_{}.png'.format( | |
name_prefix, f'{batch_idx}-{i}')) | |
# print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i)) | |
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
vis = vis * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
# if not save_img: | |
for j in range(vis.shape[0] | |
): # ! currently only export one plane at a time | |
video_out.append_data(vis[j]) | |
# if not save_img: | |
video_out.close() | |
del video_out | |
print('logged video to: ', f'{vid_dump_path}') | |
del vis, pred_vis, micro, pred, | |
mesh_dump_path = 'logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0-rotatex.obj' | |
return vid_dump_path, mesh_dump_path | |
def _init_optim_groups(self, rec_model, freeze_decoder=False): | |
"""for initializing the reconstruction model; fixing decoder part. | |
""" | |
kwargs = self.kwargs | |
optim_groups = [ | |
# vit encoder | |
{ | |
'name': 'vit_encoder', | |
'params': rec_model.encoder.parameters(), | |
'lr': kwargs['encoder_lr'], | |
'weight_decay': kwargs['encoder_weight_decay'] | |
}, | |
] | |
if not freeze_decoder: | |
optim_groups += [ | |
# vit decoder | |
{ | |
'name': 'vit_decoder', | |
'params': rec_model.decoder.vit_decoder.parameters(), | |
'lr': kwargs['vit_decoder_lr'], | |
'weight_decay': kwargs['vit_decoder_wd'] | |
}, | |
{ | |
'name': 'vit_decoder_pred', | |
'params': rec_model.decoder.decoder_pred.parameters(), | |
'lr': kwargs['vit_decoder_lr'], | |
# 'weight_decay': 0 | |
'weight_decay': kwargs['vit_decoder_wd'] | |
}, | |
# triplane decoder | |
{ | |
'name': 'triplane_decoder', | |
'params': rec_model.decoder.triplane_decoder.parameters(), | |
'lr': kwargs['triplane_decoder_lr'], | |
# 'weight_decay': self.weight_decay | |
}, | |
] | |
if rec_model.decoder.superresolution is not None: | |
optim_groups.append({ | |
'name': | |
'triplane_decoder_superresolution', | |
'params': | |
rec_model.decoder.superresolution.parameters(), | |
'lr': | |
kwargs['super_resolution_lr'], | |
}) | |
return optim_groups | |
# @th.no_grad() | |
# # def eval_loop(self, c_list:list): | |
# def eval_novelview_loop(self, rec_model): | |
# # novel view synthesis given evaluation camera trajectory | |
# video_out = imageio.get_writer( | |
# f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4', | |
# mode='I', | |
# fps=60, | |
# codec='libx264') | |
# all_loss_dict = [] | |
# novel_view_micro = {} | |
# # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
# for i, batch in enumerate(tqdm(self.eval_data)): | |
# # for i in range(0, 8, self.microbatch): | |
# # c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
# micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
# # st() | |
# if i == 0: | |
# novel_view_micro = { | |
# 'img_to_encoder': micro['img_to_encoder'][0:1] | |
# } | |
# latent = rec_model(img=novel_view_micro['img_to_encoder'], | |
# behaviour='enc_dec_wo_triplane') | |
# # else: | |
# # # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
# # novel_view_micro = { | |
# # k: | |
# # v[0:1].to(dist_util.dev()).repeat_interleave( | |
# # micro['img'].shape[0], 0) | |
# # for k, v in novel_view_micro.items() | |
# # } | |
# # pred = rec_model(img=novel_view_micro['img_to_encoder'].repeat_interleave(micro['img'].shape[0], 0), | |
# # c=micro['c']) # pred: (B, 3, 64, 64) | |
# # ! only render | |
# pred = rec_model( | |
# latent={ | |
# 'latent_after_vit': latent['latent_after_vit'].repeat_interleave(micro['img'].shape[0], 0) | |
# }, | |
# c=micro['c'], # predict novel view here | |
# behaviour='triplane_dec', | |
# ) | |
# # target = { | |
# # 'img': micro['img'], | |
# # 'depth': micro['depth'], | |
# # 'depth_mask': micro['depth_mask'] | |
# # } | |
# # targe | |
# _, loss_dict = self.loss_class(pred, micro, test_mode=True) | |
# all_loss_dict.append(loss_dict) | |
# # ! move to other places, add tensorboard | |
# # pred_vis = th.cat([ | |
# # pred['image_raw'], | |
# # -pred['image_depth'].repeat_interleave(3, dim=1) | |
# # ], | |
# # dim=-1) | |
# # normalize depth | |
# # if True: | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
# pred_depth.min()) | |
# if 'image_sr' in pred: | |
# if pred['image_sr'].shape[-1] == 512: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_512(pred['image_raw']), pred['image_sr'], | |
# self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# else: | |
# assert pred['image_sr'].shape[-1] == 128 | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_128(pred['image_raw']), pred['image_sr'], | |
# self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# else: | |
# pred_vis = th.cat([ | |
# self.pool_128(micro['img']), | |
# self.pool_128(pred['image_raw']), | |
# self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) # B, 3, H, W | |
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
# vis = vis * 127.5 + 127.5 | |
# vis = vis.clip(0, 255).astype(np.uint8) | |
# for j in range(vis.shape[0]): | |
# video_out.append_data(vis[j]) | |
# video_out.close() | |
# del video_out, vis, pred_vis, pred | |
# th.cuda.empty_cache() | |
# val_scores_for_logging = calc_average_loss(all_loss_dict) | |
# with open(os.path.join(logger.get_dir(), 'scores_novelview.json'), | |
# 'a') as f: | |
# json.dump({'step': self.step, **val_scores_for_logging}, f) | |
# # * log to tensorboard | |
# for k, v in val_scores_for_logging.items(): | |
# self.writer.add_scalar(f'Eval/NovelView/{k}', v, | |
# self.step + self.resume_step) | |
# def eval_loop(self, c_list:list): | |
def eval_novelview_loop(self, rec_model): | |
# novel view synthesis given evaluation camera trajectory | |
video_out = imageio.get_writer( | |
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4', | |
mode='I', | |
fps=60, | |
codec='libx264') | |
all_loss_dict = [] | |
novel_view_micro = {} | |
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
for i, batch in enumerate(tqdm(self.eval_data)): | |
# for i in range(0, 8, self.microbatch): | |
# c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
if i == 0: | |
novel_view_micro = { | |
k: | |
v[0:1].to(dist_util.dev()).repeat_interleave( | |
micro['img'].shape[0], 0) | |
for k, v in batch.items() | |
} | |
else: | |
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
novel_view_micro = { | |
k: | |
v[0:1].to(dist_util.dev()).repeat_interleave( | |
micro['img'].shape[0], 0) | |
for k, v in novel_view_micro.items() | |
} | |
pred = rec_model(img=novel_view_micro['img_to_encoder'], | |
c=micro['c']) # pred: (B, 3, 64, 64) | |
# target = { | |
# 'img': micro['img'], | |
# 'depth': micro['depth'], | |
# 'depth_mask': micro['depth_mask'] | |
# } | |
# targe | |
_, loss_dict = self.loss_class(pred, micro, test_mode=True) | |
all_loss_dict.append(loss_dict) | |
# ! move to other places, add tensorboard | |
# pred_vis = th.cat([ | |
# pred['image_raw'], | |
# -pred['image_depth'].repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# normalize depth | |
# if True: | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_512(pred['image_raw']), pred['image_sr'], | |
self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
elif pred['image_sr'].shape[-1] == 256: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_256(pred['image_raw']), pred['image_sr'], | |
self.pool_256(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
else: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_128(pred['image_raw']), | |
self.pool_128(pred['image_sr']), | |
self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
else: | |
# pred_vis = th.cat([ | |
# self.pool_64(micro['img']), pred['image_raw'], | |
# pred_depth.repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) # B, 3, H, W | |
pred_vis = th.cat([ | |
self.pool_128(micro['img']), | |
self.pool_128(pred['image_raw']), | |
self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
vis = vis * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
for j in range(vis.shape[0]): | |
video_out.append_data(vis[j]) | |
video_out.close() | |
val_scores_for_logging = calc_average_loss(all_loss_dict) | |
with open(os.path.join(logger.get_dir(), 'scores_novelview.json'), | |
'a') as f: | |
json.dump({'step': self.step, **val_scores_for_logging}, f) | |
# * log to tensorboard | |
for k, v in val_scores_for_logging.items(): | |
self.writer.add_scalar(f'Eval/NovelView/{k}', v, | |
self.step + self.resume_step) | |
del video_out | |
# del pred_vis | |
# del pred | |
th.cuda.empty_cache() | |
def eval_loop(self, rec_model): | |
# novel view synthesis given evaluation camera trajectory | |
video_out = imageio.get_writer( | |
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4', | |
mode='I', | |
fps=60, | |
codec='libx264') | |
all_loss_dict = [] | |
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
for i, batch in enumerate(tqdm(self.eval_data)): | |
# for i in range(0, 8, self.microbatch): | |
# c = c_list[i].to(dist_util.dev()).reshape(1, -1) | |
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
# pred = self.model(img=micro['img_to_encoder'], | |
# c=micro['c']) # pred: (B, 3, 64, 64) | |
# pred of rec model | |
pred = rec_model(img=micro['img_to_encoder'], | |
c=micro['c']) # pred: (B, 3, 64, 64) | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
pred_depth.min()) | |
if 'image_sr' in pred: | |
if pred['image_sr'].shape[-1] == 512: | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_512(pred['image_raw']), pred['image_sr'], | |
self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
else: | |
assert pred['image_sr'].shape[-1] == 128 | |
pred_vis = th.cat([ | |
micro['img_sr'], | |
self.pool_128(pred['image_raw']), pred['image_sr'], | |
self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) | |
else: | |
pred_vis = th.cat([ | |
self.pool_128(micro['img']), | |
self.pool_128(pred['image_raw']), | |
self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
vis = vis * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
for j in range(vis.shape[0]): | |
video_out.append_data(vis[j]) | |
video_out.close() | |
val_scores_for_logging = calc_average_loss(all_loss_dict) | |
with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f: | |
json.dump({'step': self.step, **val_scores_for_logging}, f) | |
# * log to tensorboard | |
for k, v in val_scores_for_logging.items(): | |
self.writer.add_scalar(f'Eval/Rec/{k}', v, | |
self.step + self.resume_step) | |
del video_out, vis, pred_vis, pred | |
th.cuda.empty_cache() | |
self.eval_novelview_loop(rec_model) | |
def save(self, mp_trainer=None, model_name='ddpm'): | |
if mp_trainer is None: | |
mp_trainer = self.mp_trainer | |
def save_checkpoint(rate, params): | |
state_dict = mp_trainer.master_params_to_state_dict(params) | |
if dist_util.get_rank() == 0: | |
logger.log(f"saving model {model_name} {rate}...") | |
if not rate: | |
filename = f"model_{model_name}{(self.step+self.resume_step):07d}.pt" | |
else: | |
filename = f"ema_{model_name}_{rate}_{(self.step+self.resume_step):07d}.pt" | |
with bf.BlobFile(bf.join(get_blob_logdir(), filename), | |
"wb") as f: | |
th.save(state_dict, f) | |
# save_checkpoint(0, self.mp_trainer_ddpm.master_params) | |
save_checkpoint(0, mp_trainer.master_params) | |
if model_name == 'ddpm': | |
for rate, params in zip(self.ema_rate, self.ema_params): | |
save_checkpoint(rate, params) | |
th.cuda.empty_cache() | |
dist_util.synchronize() | |
def _load_and_sync_parameters(self, | |
model=None, | |
model_name='ddpm', | |
resume_checkpoint=None): | |
# load safetensors from hf | |
hf_loading = '.safetensors' in self.resume_checkpoint | |
if not hf_loading: | |
if resume_checkpoint is None: | |
resume_checkpoint, self.resume_step = find_resume_checkpoint( | |
self.resume_checkpoint, model_name) or self.resume_checkpoint | |
if model is None: | |
model = self.model | |
if hf_loading or (resume_checkpoint and Path(resume_checkpoint).exists()): | |
if dist_util.get_rank() == 0: | |
# ! rank 0 return will cause all other ranks to hang | |
map_location = { | |
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank() | |
} # configure map_location properly | |
logger.log(f'mark {model_name} loading ') | |
if hf_loading: | |
logger.log( | |
f"loading model from huggingface: yslan/LN3Diff/{self.resume_checkpoint}...") | |
else: | |
logger.log( | |
f"loading model from checkpoint: {resume_checkpoint}...") | |
if hf_loading: | |
model_path = hf_hub_download(repo_id="yslan/LN3Diff", | |
filename=self.resume_checkpoint) | |
resume_state_dict = load_file(model_path) | |
else: | |
resume_state_dict = dist_util.load_state_dict( | |
resume_checkpoint, map_location=map_location) | |
logger.log(f'mark {model_name} loading finished') | |
model_state_dict = model.state_dict() | |
for k, v in resume_state_dict.items(): | |
if k in model_state_dict.keys() and v.size( | |
) == model_state_dict[k].size(): | |
model_state_dict[k] = v | |
else: | |
print( | |
'!!!! ignore key: ', | |
k, | |
": ", | |
v.size(), | |
) | |
if k in model_state_dict: | |
print('shape in model: ', | |
model_state_dict[k].size()) | |
else: | |
print(k, ' not in model') | |
model.load_state_dict(model_state_dict, strict=True) | |
del model_state_dict | |
else: | |
logger.log(f'{resume_checkpoint} not found.') | |
# print(resume_checkpoint) | |
if dist_util.get_world_size() > 1: | |
dist_util.sync_params(model.parameters()) | |
# dist_util.sync_params(model.named_parameters()) | |
print(f'synced {model_name} params') | |
def apply_model_inference(self, | |
x_noisy, | |
t, | |
c=None, | |
model_kwargs={}): # compatiable api | |
# pred_params = self.ddp_model(x_noisy, t, c=c, model_kwargs=model_kwargs) | |
pred_params = self.ddp_model(x_noisy, t, | |
**model_kwargs) # unconditional model | |
return pred_params | |
def eval_ddpm_sample(self, rec_model, **kwargs): # , ddpm_model=None): | |
# rec_model.eval() | |
# self.ddpm_model.eval() | |
self.model.eval() | |
# if ddpm_model is None: | |
# ddpm_model = self.ddp_model | |
args = dnnlib.EasyDict( | |
dict( | |
batch_size=1, | |
# image_size=224, | |
image_size=self.diffusion_input_size, | |
# ddpm_image_size=224, | |
# denoise_in_channels=self.ddp_rec_model.module.decoder.triplane_decoder.out_chans, # type: ignore | |
denoise_in_channels=self.ddpm_model. | |
in_channels, # type: ignore | |
clip_denoised=False, | |
class_cond=False, | |
use_ddim=False)) | |
model_kwargs = {} | |
if args.class_cond: | |
classes = th.randint(low=0, | |
high=NUM_CLASSES, | |
size=(args.batch_size, ), | |
device=dist_util.dev()) | |
model_kwargs["y"] = classes | |
diffusion = self.diffusion | |
sample_fn = (diffusion.p_sample_loop | |
if not args.use_ddim else diffusion.ddim_sample_loop) | |
# for i in range(2): | |
for i in range(1): | |
triplane_sample = sample_fn( | |
# self.ddp_model, | |
self, | |
(args.batch_size, args.denoise_in_channels, | |
self.diffusion_input_size, self.diffusion_input_size), | |
clip_denoised=args.clip_denoised, | |
# model_kwargs=model_kwargs, | |
mixing_normal=True, # ! | |
device=dist_util.dev(), | |
# model_kwargs=model_kwargs, | |
**model_kwargs) | |
th.cuda.empty_cache() | |
self.render_video_given_triplane( | |
triplane_sample, | |
rec_model, | |
name_prefix=f'{self.step + self.resume_step}_{i}') | |
th.cuda.empty_cache() | |
# rec_model.train() | |
# self.ddpm_model.train() | |
# ddpm_model.train() | |
self.model.train() | |
# @th.inference_mode() | |
# def render_video_given_triplane(self, | |
# planes, | |
# rec_model, | |
# name_prefix='0', | |
# save_img=False): | |
# planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments. | |
# # sr_w_code = getattr(self.ddp_rec_model.module.decoder, 'w_avg', None) | |
# # sr_w_code = None | |
# batch_size = planes.shape[0] | |
# # if sr_w_code is not None: | |
# # sr_w_code = sr_w_code.reshape(1, 1, | |
# # -1).repeat_interleave(batch_size, 0) | |
# # used during diffusion sampling inference | |
# # if not save_img: | |
# video_out = imageio.get_writer( | |
# f'{logger.get_dir()}/triplane_{name_prefix}.mp4', | |
# mode='I', | |
# fps=15, | |
# codec='libx264') | |
# if planes.shape[1] == 16: # ffhq/car | |
# ddpm_latent = { | |
# self.latent_name: planes[:, :12], | |
# 'bg_plane': planes[:, 12:16], | |
# } | |
# else: | |
# ddpm_latent = { | |
# self.latent_name: planes, | |
# } | |
# ddpm_latent.update(rec_model(latent=ddpm_latent, behaviour='decode_after_vae_no_render')) | |
# # planes = planes.repeat_interleave(micro['c'].shape[0], 0) | |
# # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval | |
# # micro_batchsize = 2 | |
# # micro_batchsize = batch_size | |
# for i, batch in enumerate(tqdm(self.eval_data)): | |
# micro = { | |
# k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v | |
# for k, v in batch.items() | |
# } | |
# # micro = {'c': batch['c'].to(dist_util.dev()).repeat_interleave(batch_size, 0)} | |
# # all_pred = [] | |
# pred = rec_model( | |
# img=None, | |
# c=micro['c'], | |
# latent=ddpm_latent, | |
# # latent={ | |
# # # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
# # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None | |
# # for k, v in ddpm_latent.items() | |
# # }, | |
# behaviour='triplane_dec') | |
# # if True: | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() - | |
# pred_depth.min()) | |
# if 'image_sr' in pred: | |
# gen_img = pred['image_sr'] | |
# if pred['image_sr'].shape[-1] == 512: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_512(pred['image_raw']), gen_img, | |
# self.pool_512(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# elif pred['image_sr'].shape[-1] == 128: | |
# pred_vis = th.cat([ | |
# micro['img_sr'], | |
# self.pool_128(pred['image_raw']), pred['image_sr'], | |
# self.pool_128(pred_depth).repeat_interleave(3, dim=1) | |
# ], | |
# dim=-1) | |
# else: | |
# gen_img = pred['image_raw'] | |
# pooled_depth = self.pool_128(pred_depth.repeat_interleave(3, dim=1)) | |
# pred_vis = th.cat( | |
# [ | |
# # self.pool_128(micro['img']), | |
# self.pool_128(gen_img), | |
# pooled_depth, | |
# ], | |
# dim=-1) # B, 3, H, W | |
# if save_img: | |
# for batch_idx in range(gen_img.shape[0]): | |
# sampled_img = Image.fromarray( | |
# (gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() * | |
# 127.5 + 127.5).clip(0, 255).astype(np.uint8)) | |
# if sampled_img.size != (512, 512): | |
# sampled_img = sampled_img.resize( | |
# (128, 128), Image.HAMMING) # for shapenet | |
# sampled_img.save(logger.get_dir() + | |
# '/FID_Cals/{}_{}.png'.format( | |
# int(name_prefix) * batch_size + | |
# batch_idx, i)) | |
# # ! save depth | |
# torchvision.utils.save_image(pooled_depth[batch_idx:batch_idx+1],logger.get_dir() + | |
# '/FID_Cals/{}_{}_depth.png'.format( | |
# int(name_prefix) * batch_size + | |
# batch_idx, i), normalize=True, val_range=(0,1), padding=0) | |
# # print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i)) | |
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy() | |
# vis = vis * 127.5 + 127.5 | |
# vis = vis.clip(0, 255).astype(np.uint8) | |
# # if vis.shape[0] > 1: | |
# # vis = np.concatenate(np.split(vis, vis.shape[0], axis=0), | |
# # axis=-3) | |
# # if not save_img: | |
# for j in range(vis.shape[0] | |
# ): # ! currently only export one plane at a time | |
# video_out.append_data(vis[j]) | |
# # if not save_img: | |
# video_out.close() | |
# del video_out | |
# print('logged video to: ', | |
# f'{logger.get_dir()}/triplane_{name_prefix}.mp4') | |
# del vis, pred_vis, micro, pred, | |
def render_video_noise_schedule(self, name_prefix='0'): | |
# planes *= self.triplane_std # denormalize for rendering | |
video_out = imageio.get_writer( | |
f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4', | |
mode='I', | |
fps=30, | |
codec='libx264') | |
for i, batch in enumerate(tqdm(self.eval_data)): | |
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
if i % 10 != 0: | |
continue | |
# ========= novel view plane settings ==== | |
if i == 0: | |
novel_view_micro = { | |
k: | |
v[0:1].to(dist_util.dev()).repeat_interleave( | |
micro['img'].shape[0], 0) | |
for k, v in batch.items() | |
} | |
else: | |
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]: | |
novel_view_micro = { | |
k: | |
v[0:1].to(dist_util.dev()).repeat_interleave( | |
micro['img'].shape[0], 0) | |
for k, v in novel_view_micro.items() | |
} | |
latent = self.ddp_rec_model( | |
img=novel_view_micro['img_to_encoder'], | |
c=micro['c'])[self.latent_name] # pred: (B, 3, 64, 64) | |
x_start = latent / self.triplane_scaling_divider # normalize std to 1 | |
# x_start = latent | |
all_pred_vis = [] | |
# for t in th.range(0, | |
# 4001, | |
# 500, | |
# dtype=th.long, | |
# device=dist_util.dev()): # cosine 4k steps | |
for t in th.range(0, | |
1001, | |
125, | |
dtype=th.long, | |
device=dist_util.dev()): # cosine 4k steps | |
# ========= add noise according to t | |
noise = th.randn_like(x_start) # x_start is the x0 image | |
x_t = self.diffusion.q_sample( | |
x_start, t, noise=noise | |
) # * add noise according to predefined schedule | |
planes_x_t = (x_t * self.triplane_scaling_divider).clamp( | |
-50, 50) # de-scaling noised x_t | |
# planes_x_t = (x_t * 1).clamp( | |
# -50, 50) # de-scaling noised x_t | |
# ===== visualize | |
pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'], | |
latent=planes_x_t, | |
behaviour=self.render_latent_behaviour | |
) # pred: (B, 3, 64, 64) | |
# pred_depth = pred['image_depth'] | |
# pred_depth = (pred_depth - pred_depth.min()) / ( | |
# pred_depth.max() - pred_depth.min()) | |
# pred_vis = th.cat([ | |
# # self.pool_128(micro['img']), | |
# pred['image_raw'], | |
# ], | |
# dim=-1) # B, 3, H, W | |
pred_vis = pred['image_raw'] | |
all_pred_vis.append(pred_vis) | |
# TODO, make grid | |
all_pred_vis = torchvision.utils.make_grid( | |
th.cat(all_pred_vis, 0), | |
nrow=len(all_pred_vis), | |
normalize=True, | |
value_range=(-1, 1), | |
scale_each=True) # normalized to [-1,1] | |
vis = all_pred_vis.permute(1, 2, 0).cpu().numpy() # H W 3 | |
vis = (vis * 255).clip(0, 255).astype(np.uint8) | |
video_out.append_data(vis) | |
video_out.close() | |
print('logged video to: ', | |
f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4') | |
th.cuda.empty_cache() | |
def plot_noise_nsr_curve(self, name_prefix='0'): | |
# planes *= self.triplane_std # denormalize for rendering | |
for i, batch in enumerate(tqdm(self.eval_data)): | |
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()} | |
if i % 10 != 0: | |
continue | |
# if i == 0: | |
latent = self.ddp_rec_model( | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
behaviour='enc_dec_wo_triplane') # pred: (B, 3, 64, 64) | |
x_start = latent[ | |
self. | |
latent_name] / self.triplane_scaling_divider # normalize std to 1 | |
snr_list = [] | |
snr_wo_data_list = [] | |
xt_mean = [] | |
xt_std = [] | |
for t in th.range(0, | |
1001, | |
5, | |
dtype=th.long, | |
device=dist_util.dev()): # cosine 4k steps | |
# ========= add noise according to t | |
noise = th.randn_like(x_start) # x_start is the x0 image | |
beta_t = _extract_into_tensor( | |
self.diffusion.sqrt_alphas_cumprod, t, x_start.shape) | |
one_minus_beta_t = _extract_into_tensor( | |
self.diffusion.sqrt_one_minus_alphas_cumprod, t, | |
x_start.shape) | |
signal_t = beta_t * x_start | |
noise_t = one_minus_beta_t * noise | |
x_t = signal_t + noise_t | |
snr = signal_t / (noise_t + 1e-6) | |
snr_wo_data = beta_t / (one_minus_beta_t + 1e-6) | |
snr_list.append(abs(snr).mean().cpu().numpy()) | |
snr_wo_data_list.append(abs(snr_wo_data).mean().cpu().numpy()) | |
xt_mean.append(x_t.mean().cpu().numpy()) | |
xt_std.append(x_t.std().cpu().numpy()) | |
print('xt_mean', xt_mean) | |
print('xt_std', xt_std) | |
print('snr', snr_list) | |
th.save( | |
{ | |
'xt_mean': xt_mean, | |
'xt_std': xt_std, | |
'snr': snr_list, | |
'snr_wo_data': snr_wo_data_list, | |
}, | |
Path(logger.get_dir()) / f'snr_{i}.pt') | |
th.cuda.empty_cache() | |
# a legacy class for direct diffusion training, not joint. | |
class TrainLoop3DDiffusion(TrainLoopDiffusionWithRec): | |
def __init__( | |
self, | |
*, | |
# model, | |
rec_model, | |
denoise_model, | |
diffusion, | |
loss_class, | |
data, | |
eval_data, | |
batch_size, | |
microbatch, | |
lr, | |
ema_rate, | |
log_interval, | |
eval_interval, | |
save_interval, | |
resume_checkpoint, | |
use_fp16=False, | |
fp16_scale_growth=0.001, | |
schedule_sampler=None, | |
weight_decay=0, | |
lr_anneal_steps=0, | |
iterations=10001, | |
ignore_resume_opt=False, | |
freeze_ae=False, | |
denoised_ae=True, | |
triplane_scaling_divider=10, | |
use_amp=False, | |
diffusion_input_size=224, | |
**kwargs): | |
super().__init__( | |
model=denoise_model, | |
diffusion=diffusion, | |
loss_class=loss_class, | |
data=data, | |
eval_data=eval_data, | |
batch_size=batch_size, | |
microbatch=microbatch, | |
lr=lr, | |
ema_rate=ema_rate, | |
log_interval=log_interval, | |
eval_interval=eval_interval, | |
save_interval=save_interval, | |
resume_checkpoint=resume_checkpoint, | |
use_fp16=use_fp16, | |
fp16_scale_growth=fp16_scale_growth, | |
weight_decay=weight_decay, | |
lr_anneal_steps=lr_anneal_steps, | |
iterations=iterations, | |
triplane_scaling_divider=triplane_scaling_divider, | |
use_amp=use_amp, | |
diffusion_input_size=diffusion_input_size, | |
schedule_sampler=schedule_sampler, | |
) | |
# self.accelerator = Accelerator() | |
self._load_and_sync_parameters(model=self.rec_model, model_name='rec') | |
# * for loading EMA | |
self.mp_trainer_rec = MixedPrecisionTrainer( | |
model=self.rec_model, | |
use_fp16=self.use_fp16, | |
use_amp=use_amp, | |
fp16_scale_growth=fp16_scale_growth, | |
model_name='rec', | |
) | |
self.denoised_ae = denoised_ae | |
if not freeze_ae: | |
self.opt_rec = AdamW( | |
self._init_optim_groups(self.mp_trainer_rec.model)) | |
else: | |
print('!! freezing AE !!') | |
# if not freeze_ae: | |
if self.resume_step: | |
if not ignore_resume_opt: | |
self._load_optimizer_state() | |
else: | |
logger.warn("Ignoring optimizer state from checkpoint.") | |
self.ema_params_rec = [ | |
self._load_ema_parameters( | |
rate, | |
self.rec_model, | |
self.mp_trainer_rec, | |
model_name=self.mp_trainer_rec.model_name) | |
for rate in self.ema_rate | |
] # for sync reconstruction model | |
else: | |
if not freeze_ae: | |
self.ema_params_rec = [ | |
copy.deepcopy(self.mp_trainer_rec.master_params) | |
for _ in range(len(self.ema_rate)) | |
] | |
if self.use_ddp is True: | |
self.rec_model = th.nn.SyncBatchNorm.convert_sync_batchnorm( | |
self.rec_model) | |
self.ddp_rec_model = DDP( | |
self.rec_model, | |
device_ids=[dist_util.dev()], | |
output_device=dist_util.dev(), | |
broadcast_buffers=False, | |
bucket_cap_mb=128, | |
find_unused_parameters=False, | |
# find_unused_parameters=True, | |
) | |
else: | |
self.ddp_rec_model = self.rec_model | |
if freeze_ae: | |
self.ddp_rec_model.eval() | |
self.ddp_rec_model.requires_grad_(False) | |
self.freeze_ae = freeze_ae | |
# if use_amp: | |
def _update_ema_rec(self): | |
for rate, params in zip(self.ema_rate, self.ema_params_rec): | |
update_ema(params, self.mp_trainer_rec.master_params, rate=rate) | |
def run_loop(self, batch=None): | |
th.cuda.empty_cache() | |
while (not self.lr_anneal_steps | |
or self.step + self.resume_step < self.lr_anneal_steps): | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
# if self.step % self.eval_interval == 0 and self.step != 0: | |
if self.step % self.eval_interval == 0: | |
if dist_util.get_rank() == 0: | |
self.eval_ddpm_sample(self.ddp_rec_model) | |
# continue # TODO, diffusion inference | |
# self.eval_loop() | |
# self.eval_novelview_loop() | |
# let all processes sync up before starting with a new epoch of training | |
dist_util.synchronize() | |
th.cuda.empty_cache() | |
batch = next(self.data) | |
self.run_step(batch) | |
if self.step % self.log_interval == 0 and dist_util.get_rank( | |
) == 0: | |
out = logger.dumpkvs() | |
# * log to tensorboard | |
for k, v in out.items(): | |
self.writer.add_scalar(f'Loss/{k}', v, | |
self.step + self.resume_step) | |
if self.step % self.save_interval == 0 and self.step != 0: | |
self.save() | |
if not self.freeze_ae: | |
self.save(self.mp_trainer_rec, 'rec') | |
dist_util.synchronize() | |
th.cuda.empty_cache() | |
# Run for a finite amount of time in integration tests. | |
if os.environ.get("DIFFUSION_TRAINING_TEST", | |
"") and self.step > 0: | |
return | |
self.step += 1 | |
if self.step > self.iterations: | |
print('reached maximum iterations, exiting') | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
if not self.freeze_ae: | |
self.save(self.mp_trainer_rec, 'rec') | |
exit() | |
# Save the last checkpoint if it wasn't already saved. | |
if (self.step - 1) % self.save_interval != 0: | |
self.save() | |
if not self.freeze_ae: | |
self.save(self.mp_trainer_rec, 'rec') | |
def run_step(self, batch, cond=None): | |
self.forward_backward(batch, | |
cond) # type: ignore # * 3D Reconstruction step | |
took_step_ddpm = self.mp_trainer.optimize(self.opt) | |
if took_step_ddpm: | |
self._update_ema() | |
if not self.freeze_ae: | |
took_step_rec = self.mp_trainer_rec.optimize(self.opt_rec) | |
if took_step_rec: | |
self._update_ema_rec() | |
self._anneal_lr() | |
self.log_step() | |
def forward_backward(self, batch, *args, **kwargs): | |
# return super().forward_backward(batch, *args, **kwargs) | |
self.mp_trainer.zero_grad() | |
# all_denoised_out = dict() | |
batch_size = batch['img'].shape[0] | |
for i in range(0, batch_size, self.microbatch): | |
micro = { | |
k: v[i:i + self.microbatch].to(dist_util.dev()) | |
for k, v in batch.items() | |
} | |
last_batch = (i + self.microbatch) >= batch_size | |
# if not freeze_ae: | |
# =================================== ae part =================================== | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer_rec.use_amp | |
and not self.freeze_ae): | |
# with th.cuda.amp.autocast(dtype=th.float16, | |
# enabled=False,): # ! debugging, no AMP on all the input | |
latent = self.ddp_rec_model( | |
img=micro['img_to_encoder'], | |
c=micro['c'], | |
behaviour='enc_dec_wo_triplane') # pred: (B, 3, 64, 64) | |
if not self.freeze_ae: | |
target = micro | |
pred = self.rec_model(latent=latent, | |
c=micro['c'], | |
behaviour='triplane_dec') | |
if last_batch or not self.use_ddp: | |
ae_loss, loss_dict = self.loss_class(pred, | |
target, | |
test_mode=False) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
ae_loss, loss_dict = self.loss_class( | |
pred, target, test_mode=False) | |
log_rec3d_loss_dict(loss_dict) | |
else: | |
ae_loss = th.tensor(0.0).to(dist_util.dev()) | |
# =================================== prepare for ddpm part =================================== | |
micro_to_denoise = latent[ | |
self. | |
latent_name] / self.triplane_scaling_divider # normalize std to 1 | |
t, weights = self.schedule_sampler.sample( | |
micro_to_denoise.shape[0], dist_util.dev()) | |
model_kwargs = {} | |
# print(micro_to_denoise.min(), micro_to_denoise.max()) | |
compute_losses = functools.partial( | |
self.diffusion.training_losses, | |
self.ddp_model, | |
micro_to_denoise, # x_start | |
t, | |
model_kwargs=model_kwargs, | |
) | |
with th.cuda.amp.autocast(dtype=th.float16, | |
enabled=self.mp_trainer.use_amp): | |
if last_batch or not self.use_ddp: | |
losses = compute_losses() | |
# denoised_out = denoised_fn() | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
losses = compute_losses() | |
if isinstance(self.schedule_sampler, LossAwareSampler): | |
self.schedule_sampler.update_with_local_losses( | |
t, losses["loss"].detach()) | |
denoise_loss = (losses["loss"] * weights).mean() | |
x_t = losses['x_t'] | |
model_output = losses['model_output'] | |
losses.pop('x_t') | |
losses.pop('model_output') | |
log_loss_dict(self.diffusion, t, { | |
k: v * weights | |
for k, v in losses.items() | |
}) | |
# self.mp_trainer.backward(denoise_loss) | |
# =================================== denosied ae part =================================== | |
# if self.denoised_ae or self.step % 500 == 0: | |
if self.denoised_ae: | |
with th.cuda.amp.autocast( | |
dtype=th.float16, | |
enabled=self.mp_trainer_rec.use_amp | |
and not self.freeze_ae): | |
# continue | |
denoised_out = denoised_fn() | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'], | |
latent=denoised_out['pred_xstart'] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically? | |
behaviour=self.render_latent_behaviour) | |
# if self.denoised_ae: | |
if last_batch or not self.use_ddp: | |
denoised_ae_loss, loss_dict = self.loss_class( | |
denoised_ae_pred, micro, test_mode=False) | |
else: | |
with self.ddp_model.no_sync(): # type: ignore | |
denoised_ae_loss, loss_dict = self.loss_class( | |
denoised_ae_pred, micro, test_mode=False) | |
# * rename | |
loss_dict_denoise_ae = {} | |
for k, v in loss_dict.items(): | |
loss_dict_denoise_ae[f'{k}_denoised'] = v.mean() | |
log_rec3d_loss_dict(loss_dict_denoise_ae) | |
else: | |
denoised_ae_loss = th.tensor(0.0).to(dist_util.dev()) | |
loss = ae_loss + denoise_loss + denoised_ae_loss | |
# self.mp_trainer.backward(denosied_ae_loss) | |
# self.mp_trainer.backward(loss) | |
# exit AMP before backward | |
self.mp_trainer.backward(loss) | |
# if self.freeze_ae: | |
# else: | |
# self.mp_trainer.backward(denoise_loss) | |
# TODO, merge visualization with original AE | |
# =================================== denoised AE log part =================================== | |
# if dist_util.get_rank() == 0 and self.step % 500 == 0: | |
if dist_util.get_rank() == 1 and self.step % 500 == 0: | |
with th.no_grad(): | |
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1) | |
gt_depth = micro['depth'] | |
if gt_depth.ndim == 3: | |
gt_depth = gt_depth.unsqueeze(1) | |
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() - | |
gt_depth.min()) | |
# if True: | |
if self.freeze_ae: | |
latent_micro = { | |
k: | |
v[0:1].to(dist_util.dev()) if v is not None else v | |
for k, v in latent.items() | |
} | |
pred = self.rec_model(latent=latent_micro, | |
c=micro['c'][0:1], | |
behaviour='triplane_dec') | |
else: | |
assert pred is not None | |
pred_depth = pred['image_depth'] | |
pred_depth = (pred_depth - pred_depth.min()) / ( | |
pred_depth.max() - pred_depth.min()) | |
pred_img = pred['image_raw'] | |
gt_img = micro['img'] | |
# if 'image_sr' in pred: # TODO | |
# pred_img = th.cat( | |
# [self.pool_512(pred_img), pred['image_sr']], | |
# dim=-1) | |
# gt_img = th.cat( | |
# [self.pool_512(micro['img']), micro['img_sr']], | |
# dim=-1) | |
# pred_depth = self.pool_512(pred_depth) | |
# gt_depth = self.pool_512(gt_depth) | |
gt_vis = th.cat( | |
[ | |
gt_img, micro['img'], micro['img'], | |
gt_depth.repeat_interleave(3, dim=1) | |
], | |
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1] | |
sr_w_code = latent_micro.get('sr_w_code', None) | |
if sr_w_code is not None: | |
sr_w_code = sr_w_code[0:1] | |
noised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
latent={ | |
'latent_normalized': | |
x_t[0:1] * self.triplane_scaling_divider, | |
# 'sr_w_code': getattr(self.ddp_rec_model.module.decoder,'w_avg').reshape(1,1,-1) | |
'sr_w_code': sr_w_code | |
}, # TODO, how to define the scale automatically | |
behaviour=self.render_latent_behaviour) | |
denoised_fn = functools.partial( | |
self.diffusion.p_mean_variance, | |
self.ddp_model, | |
x_t, # x_start | |
t, | |
model_kwargs=model_kwargs) | |
denoised_out = denoised_fn() | |
denoised_ae_pred = self.ddp_rec_model( | |
img=None, | |
c=micro['c'][0:1], | |
# latent=denoised_out['pred_xstart'][0:1] * self. | |
# triplane_scaling_divider, # TODO, how to define the scale automatically | |
latent={ | |
'latent_normalized': | |
denoised_out['pred_xstart'][0:1] * self. | |
triplane_scaling_divider, # TODO, how to define the scale automatically | |
# 'sr_w_code': getattr(self.ddp_rec_model.module.decoder,'w_avg').reshape(1,1,-1) | |
# 'sr_w_code': latent_micro['sr_w_code'][0:1] | |
'sr_w_code': | |
sr_w_code | |
}, | |
behaviour=self.render_latent_behaviour) | |
assert denoised_ae_pred is not None | |
# print(pred_img.shape) | |
# print('denoised_ae:', self.denoised_ae) | |
pred_vis = th.cat([ | |
pred_img[0:1], noised_ae_pred['image_raw'], | |
denoised_ae_pred['image_raw'], | |
pred_depth[0:1].repeat_interleave(3, dim=1) | |
], | |
dim=-1) # B, 3, H, W | |
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute( | |
1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# vis = th.cat([ | |
# self.pool_128(micro['img']), x_t[:, :3, ...], | |
# denoised_out['pred_xstart'][:, :3, ...] | |
# ], | |
# dim=-1)[0].permute( | |
# 1, 2, 0).cpu() # ! pred in range[-1, 1] | |
# vis_grid = torchvision.utils.make_grid(vis) # HWC | |
vis = vis.numpy() * 127.5 + 127.5 | |
vis = vis.clip(0, 255).astype(np.uint8) | |
Image.fromarray(vis).save( | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg' | |
) | |
print( | |
'log denoised vis to: ', | |
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg' | |
) | |
th.cuda.empty_cache() | |
# /mnt/lustre/yslan/logs/nips23/LSGM/cldm/inference/car/ablation_nomixing/FID50k | |