LN3Diff_I23D / nsr /dual_discriminator.py
NIRVANALAN
init
11e6f7b
raw
history blame
23 kB
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Discriminator architectures from the paper
"Efficient Geometry-aware 3D Generative Adversarial Networks"."""
import numpy as np
import torch
from utils.torch_utils import persistence
from utils.torch_utils.ops import upfirdn2d
from .networks_stylegan2 import DiscriminatorBlock, MappingNetwork, DiscriminatorEpilogue
from pdb import set_trace as st
@persistence.persistent_class
class SingleDiscriminator(torch.nn.Module):
def __init__(
self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base=32768, # Overall multiplier for the number of channels.
channel_max=512, # Maximum number of channels in any layer.
num_fp16_res=4, # Use FP16 for the N highest resolutions.
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
sr_upsample_factor=1, # Ignored for SingleDiscriminator
block_kwargs={}, # Arguments for DiscriminatorBlock.
mapping_kwargs={}, # Arguments for MappingNetwork.
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [
2**i for i in range(self.img_resolution_log2, 2, -1)
]
channels_dict = {
res: min(channel_base // res, channel_max)
for res in self.block_resolutions + [4]
}
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res),
8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels,
architecture=architecture,
conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels,
tmp_channels,
out_channels,
resolution=res,
first_layer_idx=cur_layer_idx,
use_fp16=use_fp16,
**block_kwargs,
**common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0,
c_dim=c_dim,
w_dim=cmap_dim,
num_ws=None,
w_avg_beta=None,
**mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4],
cmap_dim=cmap_dim,
resolution=4,
**epilogue_kwargs,
**common_kwargs)
def forward(self, img, c, update_emas=False, **block_kwargs):
img = img['image']
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'):
if filter_mode == 'antialiased':
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor,
size=(size, size),
mode='bilinear',
align_corners=False,
antialias=True)
elif filter_mode == 'classic':
ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2)
ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64,
size=(size * 2 + 2,
size * 2 + 2),
mode='bilinear',
align_corners=False)
ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64,
f,
down=2,
flip_filter=True,
padding=-1)
elif filter_mode == 'none':
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor,
size=(size, size),
mode='bilinear',
align_corners=False)
elif type(filter_mode) == float:
assert 0 < filter_mode < 1
filtered = torch.nn.functional.interpolate(image_orig_tensor,
size=(size, size),
mode='bilinear',
align_corners=False,
antialias=True)
aliased = torch.nn.functional.interpolate(image_orig_tensor,
size=(size, size),
mode='bilinear',
align_corners=False,
antialias=False)
ada_filtered_64 = (1 -
filter_mode) * aliased + (filter_mode) * filtered
return ada_filtered_64
#----------------------------------------------------------------------------
@persistence.persistent_class
class DualDiscriminator(torch.nn.Module):
def __init__(
self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base=32768, # Overall multiplier for the number of channels.
channel_max=512, # Maximum number of channels in any layer.
num_fp16_res=4, # Use FP16 for the N highest resolutions.
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
disc_c_noise=0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
block_kwargs={}, # Arguments for DiscriminatorBlock.
mapping_kwargs={}, # Arguments for MappingNetwork.
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
# img_channels *= 2
if img_channels == 3:
img_channels *= 2
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [
2**i for i in range(self.img_resolution_log2, 2, -1)
]
channels_dict = {
res: min(channel_base // res, channel_max)
for res in self.block_resolutions + [4]
}
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res),
8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels,
architecture=architecture,
conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels,
tmp_channels,
out_channels,
resolution=res,
first_layer_idx=cur_layer_idx,
use_fp16=use_fp16,
**block_kwargs,
**common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0,
c_dim=c_dim,
w_dim=cmap_dim,
num_ws=None,
w_avg_beta=None,
**mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4],
cmap_dim=cmap_dim,
resolution=4,
**epilogue_kwargs,
**common_kwargs)
self.register_buffer('resample_filter',
upfirdn2d.setup_filter([1, 3, 3, 1]))
self.disc_c_noise = disc_c_noise
def forward(self, img, c, update_emas=False, **block_kwargs):
image_raw = filtered_resizing(img['image_raw'],
# size=img['image'].shape[-1],
size=img['image_sr'].shape[-1],
f=self.resample_filter)
# img = torch.cat([img['image'], image_raw], 1)
img = torch.cat([img['image_sr'], image_raw], 1)
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
if self.disc_c_noise > 0:
c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
@persistence.persistent_class
class GeoDualDiscriminator(DualDiscriminator):
def __init__(self, c_dim, img_resolution, img_channels, architecture='resnet', channel_base=32768, channel_max=512, num_fp16_res=4, conv_clamp=256, cmap_dim=None, disc_c_noise=0, block_kwargs={}, mapping_kwargs={}, epilogue_kwargs={}, normal_condition=False):
super().__init__(c_dim, img_resolution, img_channels, architecture, channel_base, channel_max, num_fp16_res, conv_clamp, cmap_dim, disc_c_noise, block_kwargs, mapping_kwargs, epilogue_kwargs)
self.normal_condition = normal_condition
def forward(self, img, c, update_emas=False, **block_kwargs):
image= img['image']
image_raw = filtered_resizing(img['image_raw'],
size=img['image'].shape[-1],
f=self.resample_filter)
D_input_img = torch.cat([image, image_raw], 1)
image_depth = filtered_resizing(img['image_depth'], size=img['image'].shape[-1], f=self.resample_filter)
if self.normal_condition and 'normal' in img:
image_normal = filtered_resizing(img['normal'], size=img['image'].shape[-1], f=self.resample_filter)
D_input_img = torch.cat([D_input_img, image_depth, image_normal], 1)
else:
D_input_img = torch.cat([D_input_img, image_depth], 1)
img = D_input_img
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
if self.disc_c_noise > 0:
c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
#----------------------------------------------------------------------------
@persistence.persistent_class
class DummyDualDiscriminator(torch.nn.Module):
def __init__(
self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture='resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base=32768, # Overall multiplier for the number of channels.
channel_max=512, # Maximum number of channels in any layer.
num_fp16_res=4, # Use FP16 for the N highest resolutions.
conv_clamp=256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim=None, # Dimensionality of mapped conditioning label, None = default.
block_kwargs={}, # Arguments for DiscriminatorBlock.
mapping_kwargs={}, # Arguments for MappingNetwork.
epilogue_kwargs={}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
img_channels *= 2
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [
2**i for i in range(self.img_resolution_log2, 2, -1)
]
channels_dict = {
res: min(channel_base // res, channel_max)
for res in self.block_resolutions + [4]
}
fp16_resolution = max(2**(self.img_resolution_log2 + 1 - num_fp16_res),
8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels,
architecture=architecture,
conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels,
tmp_channels,
out_channels,
resolution=res,
first_layer_idx=cur_layer_idx,
use_fp16=use_fp16,
**block_kwargs,
**common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0,
c_dim=c_dim,
w_dim=cmap_dim,
num_ws=None,
w_avg_beta=None,
**mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4],
cmap_dim=cmap_dim,
resolution=4,
**epilogue_kwargs,
**common_kwargs)
self.register_buffer('resample_filter',
upfirdn2d.setup_filter([1, 3, 3, 1]))
self.raw_fade = 1
def forward(self, img, c, update_emas=False, **block_kwargs):
self.raw_fade = max(0, self.raw_fade - 1 / (500000 / 32))
image_raw = filtered_resizing(img['image_raw'],
size=img['image'].shape[-1],
f=self.resample_filter) * self.raw_fade
img = torch.cat([img['image'], image_raw], 1)
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
# panohead
# Tri-discriminator: upsampled image, super-resolved image, and segmentation mask
# V2: first concatenate imgs and seg mask, using only one conv block
@persistence.persistent_class
class MaskDualDiscriminatorV2(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
seg_resolution, # Input resolution.
seg_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
disc_c_noise = 0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
img_channels = img_channels * 2 + seg_channels
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
self.disc_c_noise = disc_c_noise
def forward(self, img, c, update_emas=False, **block_kwargs):
image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter)
seg = filtered_resizing(img['image_mask'], size=img['image'].shape[-1], f=self.resample_filter)
seg = 2 * seg - 1 # normalize to [-1,1]
img = torch.cat([img['image'], image_raw, seg], 1)
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return ' '.join([
f'c_dim={self.c_dim:d},',
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
f'seg_resolution={self.seg_resolution:d}, seg_channels={self.seg_channels:d}'])