yslan commited on
Commit
dcc4b7a
1 Parent(s): c1c0163
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +2 -1
  2. app.py +7 -7
  3. cldm/__pycache__/cldm.cpython-310.pyc +0 -0
  4. cldm/__pycache__/cldm.cpython-39.pyc +0 -0
  5. datasets/__pycache__/__init__.cpython-39.pyc +0 -0
  6. datasets/__pycache__/eg3d_dataset.cpython-39.pyc +0 -0
  7. datasets/__pycache__/g_buffer_objaverse.cpython-39.pyc +0 -0
  8. datasets/__pycache__/shapenet.cpython-39.pyc +0 -0
  9. dit/__pycache__/__init__.cpython-310.pyc +0 -0
  10. dit/__pycache__/__init__.cpython-39.pyc +0 -0
  11. dit/__pycache__/dit_decoder.cpython-39.pyc +0 -0
  12. dit/__pycache__/dit_i23d.cpython-39.pyc +0 -0
  13. dit/__pycache__/dit_models.cpython-39.pyc +0 -0
  14. dit/__pycache__/dit_models_xformers.cpython-310.pyc +0 -0
  15. dit/__pycache__/dit_models_xformers.cpython-39.pyc +0 -0
  16. dit/__pycache__/dit_trilatent.cpython-310.pyc +0 -0
  17. dit/__pycache__/dit_trilatent.cpython-39.pyc +0 -0
  18. dit/__pycache__/norm.cpython-310.pyc +0 -0
  19. dit/__pycache__/norm.cpython-39.pyc +0 -0
  20. dnnlib/__pycache__/__init__.cpython-310.pyc +0 -0
  21. dnnlib/__pycache__/__init__.cpython-39.pyc +0 -0
  22. dnnlib/__pycache__/util.cpython-310.pyc +0 -0
  23. dnnlib/__pycache__/util.cpython-39.pyc +0 -0
  24. evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/feature_extractor.cpython-39.pyc +0 -0
  25. evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/npz_stream.cpython-39.pyc +0 -0
  26. evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/pointnet2_cls_ssg.cpython-39.pyc +0 -0
  27. evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/pointnet2_utils.cpython-39.pyc +0 -0
  28. evaluations/fidkid-pytorch/models/__pycache__/inception.cpython-39.pyc +0 -0
  29. evaluations/fidkid-pytorch/models/__pycache__/lenet.cpython-39.pyc +0 -0
  30. guided_diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
  31. guided_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
  32. guided_diffusion/__pycache__/continuous_diffusion.cpython-39.pyc +0 -0
  33. guided_diffusion/__pycache__/continuous_diffusion_utils.cpython-39.pyc +0 -0
  34. guided_diffusion/__pycache__/continuous_distributions.cpython-39.pyc +0 -0
  35. guided_diffusion/__pycache__/dist_util.cpython-310.pyc +0 -0
  36. guided_diffusion/__pycache__/dist_util.cpython-39.pyc +0 -0
  37. guided_diffusion/__pycache__/fp16_util.cpython-310.pyc +0 -0
  38. guided_diffusion/__pycache__/fp16_util.cpython-39.pyc +0 -0
  39. guided_diffusion/__pycache__/gaussian_diffusion.cpython-310.pyc +0 -0
  40. guided_diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc +0 -0
  41. guided_diffusion/__pycache__/logger.cpython-310.pyc +0 -0
  42. guided_diffusion/__pycache__/logger.cpython-39.pyc +0 -0
  43. guided_diffusion/__pycache__/losses.cpython-310.pyc +0 -0
  44. guided_diffusion/__pycache__/losses.cpython-39.pyc +0 -0
  45. guided_diffusion/__pycache__/nn.cpython-310.pyc +0 -0
  46. guided_diffusion/__pycache__/nn.cpython-39.pyc +0 -0
  47. guided_diffusion/__pycache__/resample.cpython-310.pyc +0 -0
  48. guided_diffusion/__pycache__/resample.cpython-39.pyc +0 -0
  49. guided_diffusion/__pycache__/respace.cpython-310.pyc +0 -0
  50. guided_diffusion/__pycache__/respace.cpython-39.pyc +0 -0
.gitignore CHANGED
@@ -162,4 +162,5 @@ training
162
  core*
163
 
164
  tmp
165
- logs
 
 
162
  core*
163
 
164
  tmp
165
+ logs
166
+ paper_figures
app.py CHANGED
@@ -1,4 +1,4 @@
1
- import spaces # RuntimeError: CUDA has been initialized before importing the `spaces` package
2
  import os
3
  import torch
4
  import sys
@@ -290,7 +290,9 @@ def main(args_1, args_2):
290
  Locally, on an NVIDIA A100/A10 GPU, each image-conditioned diffusion generation can be done within 20 seconds (time varies due to the adaptive-step ODE solver used in flow-mathcing.)
291
  Upload an image of an object or click on one of the provided examples to see how the GaussianAnything works.
292
 
293
- The 3D viewer will render a .glb point cloud exported from the centers of the surfel Gaussians, and an integrated TSDF mesh.
 
 
294
  For best results run the demo locally and render locally - to do so, clone the [main repository](https://github.com/NIRVANALAN/GaussianAnything).
295
  """
296
  )
@@ -356,7 +358,7 @@ def main(args_1, args_2):
356
  with gr.Row():
357
  with gr.Tab("Stage-2 Output"):
358
  with gr.Column():
359
- output_video = gr.Video(value=None, width=512, label="Rendered Video (2 LoDs)", autoplay=True, loop=True)
360
  # output_video = gr.Video(value=None, width=256, label="Rendered Video", autoplay=True)
361
  output_gs = gr.Model3D(
362
  height=256,
@@ -386,11 +388,9 @@ def main(args_1, args_2):
386
  """
387
  ## Comments:
388
  1. The sampling time varies since ODE-based sampling method (dopri5 by default) has adaptive internal step, and reducing sampling steps may not reduce the overal sampling time. Sampling steps=250 is the emperical value that works well in most cases.
389
- 2. The 3D viewer shows a colored .glb mesh extracted from volumetric tri-plane, and may differ slightly with the volume rendering result.
390
  3. If you find your result unsatisfying, tune the CFG scale and change the random seed. Usually slightly increase the CFG value can lead to better performance.
391
- 3. Known limitations include:
392
- - Texture details missing: since our VAE is trained on 192x192 resolution due the the resource constraints, the texture details generated by the final 3D-LDM may be blurry. We will keep improving the performance in the future.
393
- 4. Regarding reconstruction performance, our model is slightly inferior to state-of-the-art multi-view LRM-based method (e.g. InstantMesh), but offers much better diversity, flexibility and editing potential due to the intrinsic nature of diffusion model.
394
 
395
  ## How does it work?
396
 
 
1
+ import spaces
2
  import os
3
  import torch
4
  import sys
 
290
  Locally, on an NVIDIA A100/A10 GPU, each image-conditioned diffusion generation can be done within 20 seconds (time varies due to the adaptive-step ODE solver used in flow-mathcing.)
291
  Upload an image of an object or click on one of the provided examples to see how the GaussianAnything works.
292
 
293
+ The 3D viewer will render a .glb point cloud exported from the centers of the surfel Gaussians, and an integrated TSDF mesh.
294
+ Besides, you can find the intermediate stage-1 point cloud in the Tab (Stage-1 Output).
295
+
296
  For best results run the demo locally and render locally - to do so, clone the [main repository](https://github.com/NIRVANALAN/GaussianAnything).
297
  """
298
  )
 
358
  with gr.Row():
359
  with gr.Tab("Stage-2 Output"):
360
  with gr.Column():
361
+ output_video = gr.Video(value=None, width=384, label="Rendered Video (2 LoDs)", autoplay=True, loop=True)
362
  # output_video = gr.Video(value=None, width=256, label="Rendered Video", autoplay=True)
363
  output_gs = gr.Model3D(
364
  height=256,
 
388
  """
389
  ## Comments:
390
  1. The sampling time varies since ODE-based sampling method (dopri5 by default) has adaptive internal step, and reducing sampling steps may not reduce the overal sampling time. Sampling steps=250 is the emperical value that works well in most cases.
391
+ 2. The 3D viewer shows a colored .glb point cloud extracted from 2DGS center and xyz, as well as a TSDF integrated mesh from multi-view RGBD images.
392
  3. If you find your result unsatisfying, tune the CFG scale and change the random seed. Usually slightly increase the CFG value can lead to better performance.
393
+ 4. Regarding image-to-3D reconstruction performance, our model is slightly inferior to state-of-the-art multi-view LRM-based method (e.g. InstantMesh), but offers much better diversity, flexibility and editing potential due to the intrinsic nature of diffusion model.
 
 
394
 
395
  ## How does it work?
396
 
cldm/__pycache__/cldm.cpython-310.pyc DELETED
Binary file (6.71 kB)
 
cldm/__pycache__/cldm.cpython-39.pyc DELETED
Binary file (6.67 kB)
 
datasets/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (234 Bytes)
 
datasets/__pycache__/eg3d_dataset.cpython-39.pyc DELETED
Binary file (14 kB)
 
datasets/__pycache__/g_buffer_objaverse.cpython-39.pyc DELETED
Binary file (95.3 kB)
 
datasets/__pycache__/shapenet.cpython-39.pyc DELETED
Binary file (19.4 kB)
 
dit/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (157 Bytes)
 
dit/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (155 Bytes)
 
dit/__pycache__/dit_decoder.cpython-39.pyc DELETED
Binary file (7.12 kB)
 
dit/__pycache__/dit_i23d.cpython-39.pyc DELETED
Binary file (26.5 kB)
 
dit/__pycache__/dit_models.cpython-39.pyc DELETED
Binary file (15.5 kB)
 
dit/__pycache__/dit_models_xformers.cpython-310.pyc DELETED
Binary file (29.1 kB)
 
dit/__pycache__/dit_models_xformers.cpython-39.pyc DELETED
Binary file (29.7 kB)
 
dit/__pycache__/dit_trilatent.cpython-310.pyc DELETED
Binary file (9.21 kB)
 
dit/__pycache__/dit_trilatent.cpython-39.pyc DELETED
Binary file (9.32 kB)
 
dit/__pycache__/norm.cpython-310.pyc DELETED
Binary file (1.35 kB)
 
dit/__pycache__/norm.cpython-39.pyc DELETED
Binary file (1.34 kB)
 
dnnlib/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (227 Bytes)
 
dnnlib/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (225 Bytes)
 
dnnlib/__pycache__/util.cpython-310.pyc DELETED
Binary file (15.9 kB)
 
dnnlib/__pycache__/util.cpython-39.pyc DELETED
Binary file (15.9 kB)
 
evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/feature_extractor.cpython-39.pyc DELETED
Binary file (4.65 kB)
 
evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/npz_stream.cpython-39.pyc DELETED
Binary file (10 kB)
 
evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/pointnet2_cls_ssg.cpython-39.pyc DELETED
Binary file (3.59 kB)
 
evaluations/fidkid-pytorch/3d-metrics/evals/__pycache__/pointnet2_utils.cpython-39.pyc DELETED
Binary file (10.7 kB)
 
evaluations/fidkid-pytorch/models/__pycache__/inception.cpython-39.pyc DELETED
Binary file (3.72 kB)
 
evaluations/fidkid-pytorch/models/__pycache__/lenet.cpython-39.pyc DELETED
Binary file (1.83 kB)
 
guided_diffusion/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (327 Bytes)
 
guided_diffusion/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (325 Bytes)
 
guided_diffusion/__pycache__/continuous_diffusion.cpython-39.pyc DELETED
Binary file (22.9 kB)
 
guided_diffusion/__pycache__/continuous_diffusion_utils.cpython-39.pyc DELETED
Binary file (23.8 kB)
 
guided_diffusion/__pycache__/continuous_distributions.cpython-39.pyc DELETED
Binary file (10.1 kB)
 
guided_diffusion/__pycache__/dist_util.cpython-310.pyc DELETED
Binary file (3.64 kB)
 
guided_diffusion/__pycache__/dist_util.cpython-39.pyc DELETED
Binary file (3.67 kB)
 
guided_diffusion/__pycache__/fp16_util.cpython-310.pyc DELETED
Binary file (9.39 kB)
 
guided_diffusion/__pycache__/fp16_util.cpython-39.pyc DELETED
Binary file (9.42 kB)
 
guided_diffusion/__pycache__/gaussian_diffusion.cpython-310.pyc DELETED
Binary file (28.9 kB)
 
guided_diffusion/__pycache__/gaussian_diffusion.cpython-39.pyc DELETED
Binary file (28.9 kB)
 
guided_diffusion/__pycache__/logger.cpython-310.pyc DELETED
Binary file (15.7 kB)
 
guided_diffusion/__pycache__/logger.cpython-39.pyc DELETED
Binary file (15.8 kB)
 
guided_diffusion/__pycache__/losses.cpython-310.pyc DELETED
Binary file (2.53 kB)
 
guided_diffusion/__pycache__/losses.cpython-39.pyc DELETED
Binary file (2.52 kB)
 
guided_diffusion/__pycache__/nn.cpython-310.pyc DELETED
Binary file (5.93 kB)
 
guided_diffusion/__pycache__/nn.cpython-39.pyc DELETED
Binary file (6.02 kB)
 
guided_diffusion/__pycache__/resample.cpython-310.pyc DELETED
Binary file (6.79 kB)
 
guided_diffusion/__pycache__/resample.cpython-39.pyc DELETED
Binary file (6.84 kB)
 
guided_diffusion/__pycache__/respace.cpython-310.pyc DELETED
Binary file (5.29 kB)
 
guided_diffusion/__pycache__/respace.cpython-39.pyc DELETED
Binary file (5.37 kB)