Spaces:
Runtime error
Runtime error
| """ | |
| Train a diffusion model on images. | |
| """ | |
| # import imageio | |
| from pathlib import Path | |
| import torchvision | |
| import kornia | |
| import lz4.frame | |
| import gzip | |
| import random | |
| import json | |
| import sys | |
| import os | |
| import lmdb | |
| from tqdm import tqdm | |
| sys.path.append('.') | |
| import torch.distributed as dist | |
| import pytorch3d.ops | |
| import pickle | |
| import traceback | |
| from PIL import Image | |
| import torch as th | |
| if th.cuda.is_available(): | |
| from xformers.triton import FusedLayerNorm as LayerNorm | |
| import torch.multiprocessing as mp | |
| import lzma | |
| import webdataset as wds | |
| import numpy as np | |
| import point_cloud_utils as pcu | |
| from torch.utils.data import DataLoader, Dataset | |
| import imageio.v3 as iio | |
| import argparse | |
| import dnnlib | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.script_util import ( | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| ) | |
| # from nsr.train_util import TrainLoop3DRec as TrainLoop | |
| from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
| from datasets.shapenet import load_data, load_data_for_lmdb, load_eval_data, load_memory_data | |
| from nsr.losses.builder import E3DGELossClass | |
| from datasets.eg3d_dataset import init_dataset_kwargs | |
| from nsr.volumetric_rendering.ray_sampler import RaySampler | |
| # from .lmdb_create import encode_and_compress_image | |
| def encode_and_compress_image(inp_array, is_image=False, compress=True): | |
| # Read the image using imageio | |
| # image = imageio.v3.imread(image_path) | |
| # Convert the image to bytes | |
| # with io.BytesIO() as byte_buffer: | |
| # imageio.imsave(byte_buffer, image, format="png") | |
| # image_bytes = byte_buffer.getvalue() | |
| if is_image: | |
| inp_bytes = iio.imwrite("<bytes>", inp_array, extension=".png") | |
| else: | |
| inp_bytes = inp_array.tobytes() | |
| # Compress the image data using gzip | |
| if compress: | |
| # compressed_data = gzip.compress(inp_bytes) | |
| compressed_data = lz4.frame.compress(inp_bytes) | |
| return compressed_data | |
| else: | |
| return inp_bytes | |
| from pdb import set_trace as st | |
| import bz2 | |
| # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 | |
| def training_loop(args): | |
| # def training_loop(args): | |
| # dist_util.setup_dist(args) | |
| # th.autograd.set_detect_anomaly(True) # type: ignore | |
| th.autograd.set_detect_anomaly(False) # type: ignore | |
| # https://blog.csdn.net/qq_41682740/article/details/126304613 | |
| SEED = args.seed | |
| # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) | |
| # logger.log(f"{args.local_rank=} init complete, seed={SEED}") | |
| # th.cuda.set_device(args.local_rank) | |
| th.cuda.empty_cache() | |
| # * deterministic algorithms flags | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| random.seed(SEED) | |
| ray_sampler = RaySampler() | |
| # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
| logger.configure(dir=args.logdir) | |
| logger.log("creating encoder and NSR decoder...") | |
| # device = dist_util.dev() | |
| # device = th.device("cuda", args.local_rank) | |
| # shared eg3d opts | |
| opts = eg3d_options_default() | |
| logger.log("creating data loader...") | |
| # let all processes sync up before starting with a new epoch of training | |
| dist_util.synchronize() | |
| # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) | |
| opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
| # opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start | |
| # loss_class = E3DGELossClass(device, opt).to(device) | |
| # writer = SummaryWriter() # TODO, add log dir | |
| logger.log("training...") | |
| def save_pcd_from_gs(lmdb_path, start_shard, wds_split): | |
| """ | |
| Convert a PyTorch dataset to LMDB format. | |
| Parameters: | |
| - dataset: PyTorch dataset | |
| - lmdb_path: Path to store the LMDB database | |
| """ | |
| # ! read dataset path | |
| # latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals/latent_dir/Animals' | |
| latent_dir = '/nas/shared/V2V/yslan/logs/nips23/Reconstruction/final/objav/vae/gs/infer-latents/768/8x8/animals-gs-latent-dim=10-fullset/latent_dir' | |
| ins_list = [] | |
| for class_dir in os.listdir(latent_dir)[:]: | |
| for dict_dir in os.listdir(os.path.join(latent_dir, class_dir))[:]: | |
| for ins_dir in os.listdir(os.path.join(latent_dir, class_dir, dict_dir)): | |
| ins_list.append(os.path.join(class_dir, dict_dir, ins_dir)) | |
| K = 4096 # fps K | |
| for idx, ins in enumerate(tqdm(ins_list)): | |
| # sample_ins = sample.pop('ins') | |
| pcd_path = Path(f'{logger.get_dir()}/fps-pcd/{ins}') | |
| if (pcd_path / f'fps-{K}.ply').exists(): | |
| continue | |
| # ! load gaussians | |
| gaussians = np.load(os.path.join(latent_dir,ins,'gaussians.npy')) | |
| points = gaussians[0,:, 0:3] | |
| # load opacity and scale | |
| opacity = gaussians[0,:, 3:4] | |
| # scale = gaussians[0,:, 4:6] | |
| # colors = gaussians[0, :, 10:13] | |
| opacity_mask = opacity < 0.005 # official threshold | |
| high_opacity_points = points[~opacity_mask[..., 0]] | |
| # high_opacity_colors = colors[~opacity_mask[..., 0]] | |
| high_opacity_points = th.from_numpy(high_opacity_points).to(dist_util.dev()) | |
| pcd_path.mkdir(parents=True, exist_ok=True) | |
| try: | |
| fps_points = pytorch3d.ops.sample_farthest_points( | |
| high_opacity_points.unsqueeze(0), K=K)[0] | |
| pcu.save_mesh_v( | |
| str(pcd_path / f'fps-{K}.ply'), | |
| fps_points[0].detach().cpu().numpy(), | |
| ) | |
| assert (pcd_path / f'fps-{K}.ply').exists() | |
| except Exception as e: | |
| continue | |
| print(pcd_path, 'save failed: ', e) | |
| save_pcd_from_gs(os.path.join(logger.get_dir(), f'wds-%06d.tar'), | |
| args.start_shard, args.wds_split) | |
| def create_argparser(**kwargs): | |
| # defaults.update(model_and_diffusion_defaults()) | |
| defaults = dict( | |
| seed=0, | |
| dataset_size=-1, | |
| trainer_name='input_rec', | |
| use_amp=False, | |
| overfitting=False, | |
| num_workers=4, | |
| image_size=128, | |
| image_size_encoder=224, | |
| iterations=150000, | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| eval_batch_size=12, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| data_dir="", | |
| eval_data_dir="", | |
| # load_depth=False, # TODO | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| # test warm up pose sampling training | |
| objv_dataset=False, | |
| pose_warm_up_iter=-1, | |
| start_shard=0, | |
| shuffle_across_cls=False, | |
| wds_split=1, # out of 4 | |
| ) | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| # os.environ[ | |
| # "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| # os.environ["TORCH_CPP_LOG_LEVEL"]="INFO" | |
| # os.environ["NCCL_DEBUG"]="INFO" | |
| args = create_argparser().parse_args() | |
| # args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| opts = args | |
| args.rendering_kwargs = rendering_options_defaults(opts) | |
| # print(args) | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| # Launch processes. | |
| print('Launching processes...') | |
| # try: | |
| training_loop(args) | |
| # except KeyboardInterrupt as e: | |
| # except Exception as e: | |
| # # print(e) | |
| # traceback.print_exc() | |
| # dist_util.cleanup() # clean port and socket when ctrl+c | |