Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Generate a large batch of image samples from a model and save them as a large | |
numpy array. This can be used to produce samples for FID evaluation. | |
""" | |
import argparse | |
import json | |
import sys | |
import os | |
sys.path.append('.') | |
from pdb import set_trace as st | |
import imageio | |
import numpy as np | |
import torch as th | |
import torch.distributed as dist | |
from guided_diffusion import dist_util, logger | |
from guided_diffusion.script_util import ( | |
NUM_CLASSES, | |
model_and_diffusion_defaults, | |
create_model_and_diffusion, | |
add_dict_to_argparser, | |
args_to_dict, | |
continuous_diffusion_defaults, | |
control_net_defaults, | |
) | |
th.backends.cuda.matmul.allow_tf32 = True | |
th.backends.cudnn.allow_tf32 = True | |
th.backends.cudnn.enabled = True | |
from pathlib import Path | |
from tqdm import tqdm, trange | |
import dnnlib | |
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop | |
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion | |
import nsr | |
import nsr.lsgm | |
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults | |
from datasets.shapenet import load_eval_data | |
from torch.utils.data import Subset | |
from datasets.eg3d_dataset import init_dataset_kwargs | |
SEED = 0 | |
def main(args): | |
# args.rendering_kwargs = rendering_options_defaults(args) | |
dist_util.setup_dist(args) | |
logger.configure(dir=args.logdir) | |
th.cuda.empty_cache() | |
th.cuda.manual_seed_all(SEED) | |
np.random.seed(SEED) | |
# * set denoise model args | |
logger.log("creating model and diffusion...") | |
args.img_size = [args.image_size_encoder] | |
# ! no longer required for LDM | |
# args.denoise_in_channels = args.out_chans | |
# args.denoise_out_channels = args.out_chans | |
args.image_size = args.image_size_encoder # 224, follow the triplane size | |
denoise_model, diffusion = create_model_and_diffusion( | |
**args_to_dict(args, | |
model_and_diffusion_defaults().keys())) | |
if 'cldm' in args.trainer_name: | |
assert isinstance(denoise_model, tuple) | |
denoise_model, controlNet = denoise_model | |
controlNet.to(dist_util.dev()) | |
controlNet.train() | |
else: | |
controlNet = None | |
opts = eg3d_options_default() | |
if args.sr_training: | |
args.sr_kwargs = dnnlib.EasyDict( | |
channel_base=opts.cbase, | |
channel_max=opts.cmax, | |
fused_modconv_default='inference_only', | |
use_noise=True | |
) # ! close noise injection? since noise_mode='none' in eg3d | |
# denoise_model.load_state_dict( | |
# dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu")) | |
denoise_model.to(dist_util.dev()) | |
if args.use_fp16: | |
denoise_model.convert_to_fp16() | |
denoise_model.eval() | |
# * auto-encoder reconstruction model | |
logger.log("creating 3DAE...") | |
auto_encoder = create_3DAE_model( | |
**args_to_dict(args, | |
encoder_and_nsr_defaults().keys())) | |
# logger.log("AE triplane decoder reuses G_ema decoder...") | |
# auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) | |
# print(auto_encoder.decoder.w_avg.shape) # [512] | |
# auto_encoder.load_state_dict( | |
# dist_util.load_state_dict(args.rec_model_path, map_location="cpu")) | |
auto_encoder.to(dist_util.dev()) | |
auto_encoder.eval() | |
# TODO, how to set the scale? | |
logger.log("create dataset") | |
if args.objv_dataset: | |
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data | |
else: # shapenet | |
from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
if args.cfg in ('afhq', 'ffhq'): | |
# ! load data | |
logger.log("creating eg3d data loader...") | |
training_set_kwargs, dataset_name = init_dataset_kwargs( | |
data=args.data_dir, | |
class_name='datasets.eg3d_dataset.ImageFolderDataset' | |
) # only load pose here | |
# if args.cond and not training_set_kwargs.use_labels: | |
# raise Exception('check here') | |
# training_set_kwargs.use_labels = args.cond | |
training_set_kwargs.use_labels = True | |
training_set_kwargs.xflip = True | |
training_set_kwargs.random_seed = SEED | |
# desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
# * construct ffhq/afhq dataset | |
training_set = dnnlib.util.construct_class_by_name( | |
**training_set_kwargs) # subclass of training.dataset.Dataset | |
training_set = dnnlib.util.construct_class_by_name( | |
**training_set_kwargs) # subclass of training.dataset.Dataset | |
# training_set_sampler = InfiniteSampler( | |
# dataset=training_set, | |
# rank=dist_util.get_rank(), | |
# num_replicas=dist_util.get_world_size(), | |
# seed=SEED) | |
# data = iter( | |
# th.utils.data.DataLoader(dataset=training_set, | |
# sampler=training_set_sampler, | |
# batch_size=args.batch_size, | |
# pin_memory=True, | |
# num_workers=args.num_workers,)) | |
# # prefetch_factor=2)) | |
eval_data = th.utils.data.DataLoader(dataset=Subset( | |
training_set, np.arange(25)), | |
batch_size=args.eval_batch_size, | |
num_workers=1) | |
else: | |
logger.log("creating data loader...") | |
if args.use_wds: | |
if args.eval_data_dir == 'NONE': | |
with open(args.eval_shards_lst) as f: | |
eval_shards_lst = [url.strip() for url in f.readlines()] | |
else: | |
eval_shards_lst = args.eval_data_dir # auto expanded | |
eval_data = load_wds_data( | |
eval_shards_lst, args.image_size, args.image_size_encoder, | |
args.eval_batch_size, args.num_workers, | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
else: | |
eval_data = load_eval_data( | |
file_path=args.eval_data_dir, | |
batch_size=args.eval_batch_size, | |
reso=args.image_size, | |
reso_encoder=args.image_size_encoder, # 224 -> 128 | |
num_workers=args.num_workers, | |
# load_depth=True, # for evaluation | |
**args_to_dict(args, | |
dataset_defaults().keys())) | |
TrainLoop = { | |
'adm': nsr.TrainLoop3DDiffusion, | |
'dit': nsr.TrainLoop3DDiffusionDiT, | |
# lsgm | |
'ssd': nsr.TrainLoop3DDiffusionSingleStage, | |
# 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD, | |
'ssd_cvD_sds': nsr.TrainLoop3DDiffusionSingleStagecvDSDS, | |
'ssd_cvd_sds_no_separate_sds_step': | |
nsr.TrainLoop3DDiffusionSingleStagecvDSDS_sdswithrec, | |
# 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD, | |
'ssd_cvD_sds': nsr.TrainLoop3DDiffusionSingleStagecvDSDS, | |
'vpsde_lsgm_noD': nsr.lsgm.TrainLoop3DDiffusionLSGM_noD, # use vpsde | |
'vpsde_cldm': nsr.lsgm.TrainLoop3DDiffusionLSGM_Control, | |
'vpsde_TrainLoop3DDiffusionLSGM_cvD': | |
nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD, | |
'vpsde_lsgm_joint_noD': | |
nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD, # use vpsde | |
'vpsde_lsgm_joint_noD_ponly': | |
nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD_ponly, # use vpsde | |
'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn, | |
'vpsde_ldm': nsr.lsgm.TrainLoop3D_LDM, | |
'sgm_legacy': | |
nsr.lsgm.sgm_DiffusionEngine.DiffusionEngineLSGM, | |
}[args.trainer_name] | |
# continuous | |
if 'vpsde' in args.trainer_name: | |
sde_diffusion = make_sde_diffusion( | |
dnnlib.EasyDict( | |
args_to_dict(args, | |
continuous_diffusion_defaults().keys()))) | |
# assert args.mixed_prediction, 'enable mixed_prediction by default' | |
logger.log('create VPSDE diffusion.') | |
else: | |
sde_diffusion = None | |
# if 'cldm' in args.trainer_name: | |
# assert isinstance(denoise_model, tuple) | |
# denoise_model, controlNet = denoise_model | |
# controlNet.to(dist_util.dev()) | |
# controlNet.train() | |
# else: | |
# controlNet = None | |
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs | |
training_loop_class = TrainLoop(rec_model=auto_encoder, | |
denoise_model=denoise_model, | |
control_model=controlNet, | |
diffusion=diffusion, | |
sde_diffusion=sde_diffusion, | |
loss_class=None, | |
data=None, | |
eval_data=eval_data, | |
**vars(args)) | |
logger.log("sampling...") | |
dist_util.synchronize() | |
# all_images = [] | |
# all_labels = [] | |
# while len(all_images) * args.batch_size < args.num_samples: | |
if dist_util.get_rank() == 0: | |
(Path(logger.get_dir()) / 'FID_Cals').mkdir(exist_ok=True, | |
parents=True) | |
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
json.dump(vars(args), f, indent=2) | |
# ! use pre-saved camera pose | |
camera = th.load('eval_pose.pt', map_location=dist_util.dev())[:] | |
# for sample_idx in trange(args.num_samples): | |
model_kwargs = {} | |
# if args.class_cond: | |
# classes = th.randint(low=0, | |
# high=NUM_CLASSES, | |
# size=(args.batch_size, ), | |
# device=dist_util.dev()) | |
# model_kwargs["y"] = classes | |
# training_loop_class.step = sample_idx # save to different position | |
# if args.create_controlnet or 'crossattn' in args.trainer_name: | |
training_loop_class.eval_cldm( | |
prompt=args.prompt, | |
unconditional_guidance_scale=args. | |
unconditional_guidance_scale, | |
use_ddim=args.use_ddim, | |
save_img=args.save_img, | |
use_train_trajectory=args.use_train_trajectory, | |
camera=camera, | |
num_instances=args.num_instances, | |
num_samples=args.num_samples, | |
# training_loop_class.rec_model, | |
# training_loop_class.ddpm_model | |
) | |
dist.barrier() | |
logger.log("sampling complete") | |
def create_argparser(): | |
defaults = dict( | |
image_size_encoder=224, | |
triplane_scaling_divider=1.0, # divide by this value | |
diffusion_input_size=-1, | |
trainer_name='adm', | |
use_amp=False, | |
# triplane_scaling_divider=1.0, # divide by this value | |
# * sampling flags | |
clip_denoised=False, | |
num_samples=10, | |
num_instances=10, # for i23d, loop different condition | |
use_ddim=False, | |
ddpm_model_path="", | |
cldm_model_path="", | |
rec_model_path="", | |
# * eval logging flags | |
logdir="/mnt/lustre/yslan/logs/nips23/", | |
data_dir="", | |
eval_data_dir="", | |
eval_batch_size=1, | |
num_workers=1, | |
# * training flags for loading TrainingLoop class | |
overfitting=False, | |
image_size=128, | |
iterations=150000, | |
schedule_sampler="uniform", | |
anneal_lr=False, | |
lr=5e-5, | |
weight_decay=0.0, | |
lr_anneal_steps=0, | |
batch_size=1, | |
microbatch=-1, # -1 disables microbatches | |
ema_rate="0.9999", # comma-separated list of EMA values | |
log_interval=50, | |
eval_interval=2500, | |
save_interval=10000, | |
resume_checkpoint="", | |
resume_cldm_checkpoint="", | |
resume_checkpoint_EG3D="", | |
use_fp16=False, | |
fp16_scale_growth=1e-3, | |
load_submodule_name='', # for loading pretrained auto_encoder model | |
ignore_resume_opt=False, | |
freeze_ae=False, | |
denoised_ae=True, | |
# inference prompt | |
prompt="a red chair", | |
interval=1, | |
save_img=False, | |
use_train_trajectory= | |
False, # use train trajectory to sample images for fid calculation | |
unconditional_guidance_scale=1.0, | |
use_eos_feature=False, | |
) | |
defaults.update(model_and_diffusion_defaults()) | |
defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
defaults.update(loss_defaults()) | |
defaults.update(continuous_diffusion_defaults()) | |
defaults.update(control_net_defaults()) | |
defaults.update(dataset_defaults()) | |
parser = argparse.ArgumentParser() | |
add_dict_to_argparser(parser, defaults) | |
return parser | |
if __name__ == "__main__": | |
# os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
# os.environ["NCCL_DEBUG"] = "INFO" | |
os.environ[ | |
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
args = create_argparser().parse_args() | |
args.local_rank = int(os.environ["LOCAL_RANK"]) | |
args.gpus = th.cuda.device_count() | |
args.rendering_kwargs = rendering_options_defaults(args) | |
main(args) | |