Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Based on: https://github.com/yanx27/Pointnet_Pointnet2_pytorch/blob/eb64fe0b4c24055559cea26299cb485dcb43d8dd/models/pointnet_utils.py | |
MIT License | |
Copyright (c) 2019 benny | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
from time import time | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def timeit(tag, t): | |
print("{}: {}s".format(tag, time() - t)) | |
return time() | |
def pc_normalize(pc): | |
l = pc.shape[0] | |
centroid = np.mean(pc, axis=0) | |
pc = pc - centroid | |
m = np.max(np.sqrt(np.sum(pc**2, axis=1))) | |
pc = pc / m | |
return pc | |
def square_distance(src, dst): | |
""" | |
Calculate Euclid distance between each two points. | |
src^T * dst = xn * xm + yn * ym + zn * zm; | |
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; | |
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; | |
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 | |
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst | |
Input: | |
src: source points, [B, N, C] | |
dst: target points, [B, M, C] | |
Output: | |
dist: per-point square distance, [B, N, M] | |
""" | |
B, N, _ = src.shape | |
_, M, _ = dst.shape | |
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) | |
dist += torch.sum(src**2, -1).view(B, N, 1) | |
dist += torch.sum(dst**2, -1).view(B, 1, M) | |
return dist | |
def index_points(points, idx): | |
""" | |
Input: | |
points: input points data, [B, N, C] | |
idx: sample index data, [B, S] | |
Return: | |
new_points:, indexed points data, [B, S, C] | |
""" | |
device = points.device | |
B = points.shape[0] | |
view_shape = list(idx.shape) | |
view_shape[1:] = [1] * (len(view_shape) - 1) | |
repeat_shape = list(idx.shape) | |
repeat_shape[0] = 1 | |
batch_indices = ( | |
torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape) | |
) | |
new_points = points[batch_indices, idx, :] | |
return new_points | |
def farthest_point_sample(xyz, npoint, deterministic=False): | |
""" | |
Input: | |
xyz: pointcloud data, [B, N, 3] | |
npoint: number of samples | |
Return: | |
centroids: sampled pointcloud index, [B, npoint] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device) | |
distance = torch.ones(B, N).to(device) * 1e10 | |
if deterministic: | |
farthest = torch.arange(0, B, dtype=torch.long).to(device) | |
else: | |
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device) | |
batch_indices = torch.arange(B, dtype=torch.long).to(device) | |
for i in range(npoint): | |
centroids[:, i] = farthest | |
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3) | |
dist = torch.sum((xyz - centroid) ** 2, -1) | |
mask = dist < distance | |
distance[mask] = dist[mask] | |
farthest = torch.max(distance, -1)[1] | |
return centroids | |
def query_ball_point(radius, nsample, xyz, new_xyz): | |
""" | |
Input: | |
radius: local region radius | |
nsample: max sample number in local region | |
xyz: all points, [B, N, 3] | |
new_xyz: query points, [B, S, 3] | |
Return: | |
group_idx: grouped points index, [B, S, nsample] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
_, S, _ = new_xyz.shape | |
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1]) | |
sqrdists = square_distance(new_xyz, xyz) | |
group_idx[sqrdists > radius**2] = N | |
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample] | |
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample]) | |
mask = group_idx == N | |
group_idx[mask] = group_first[mask] | |
return group_idx | |
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False, deterministic=False): | |
""" | |
Input: | |
npoint: | |
radius: | |
nsample: | |
xyz: input points position data, [B, N, 3] | |
points: input points data, [B, N, D] | |
Return: | |
new_xyz: sampled points position data, [B, npoint, nsample, 3] | |
new_points: sampled points data, [B, npoint, nsample, 3+D] | |
""" | |
B, N, C = xyz.shape | |
S = npoint | |
fps_idx = farthest_point_sample(xyz, npoint, deterministic=deterministic) # [B, npoint, C] | |
new_xyz = index_points(xyz, fps_idx) | |
idx = query_ball_point(radius, nsample, xyz, new_xyz) | |
grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C] | |
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) | |
if points is not None: | |
grouped_points = index_points(points, idx) | |
new_points = torch.cat( | |
[grouped_xyz_norm, grouped_points], dim=-1 | |
) # [B, npoint, nsample, C+D] | |
else: | |
new_points = grouped_xyz_norm | |
if returnfps: | |
return new_xyz, new_points, grouped_xyz, fps_idx | |
else: | |
return new_xyz, new_points | |
def sample_and_group_all(xyz, points): | |
""" | |
Input: | |
xyz: input points position data, [B, N, 3] | |
points: input points data, [B, N, D] | |
Return: | |
new_xyz: sampled points position data, [B, 1, 3] | |
new_points: sampled points data, [B, 1, N, 3+D] | |
""" | |
device = xyz.device | |
B, N, C = xyz.shape | |
new_xyz = torch.zeros(B, 1, C).to(device) | |
grouped_xyz = xyz.view(B, 1, N, C) | |
if points is not None: | |
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1) | |
else: | |
new_points = grouped_xyz | |
return new_xyz, new_points | |
class PointNetSetAbstraction(nn.Module): | |
def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all): | |
super(PointNetSetAbstraction, self).__init__() | |
self.npoint = npoint | |
self.radius = radius | |
self.nsample = nsample | |
self.mlp_convs = nn.ModuleList() | |
self.mlp_bns = nn.ModuleList() | |
last_channel = in_channel | |
for out_channel in mlp: | |
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1)) | |
self.mlp_bns.append(nn.BatchNorm2d(out_channel)) | |
last_channel = out_channel | |
self.group_all = group_all | |
def forward(self, xyz, points): | |
""" | |
Input: | |
xyz: input points position data, [B, C, N] | |
points: input points data, [B, D, N] | |
Return: | |
new_xyz: sampled points position data, [B, C, S] | |
new_points_concat: sample points feature data, [B, D', S] | |
""" | |
xyz = xyz.permute(0, 2, 1) | |
if points is not None: | |
points = points.permute(0, 2, 1) | |
if self.group_all: | |
new_xyz, new_points = sample_and_group_all(xyz, points) | |
else: | |
new_xyz, new_points = sample_and_group( | |
self.npoint, self.radius, self.nsample, xyz, points, deterministic=not self.training | |
) | |
# new_xyz: sampled points position data, [B, npoint, C] | |
# new_points: sampled points data, [B, npoint, nsample, C+D] | |
new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint] | |
for i, conv in enumerate(self.mlp_convs): | |
bn = self.mlp_bns[i] | |
new_points = F.relu(bn(conv(new_points))) | |
new_points = torch.max(new_points, 2)[0] | |
new_xyz = new_xyz.permute(0, 2, 1) | |
return new_xyz, new_points | |
class PointNetSetAbstractionMsg(nn.Module): | |
def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list): | |
super(PointNetSetAbstractionMsg, self).__init__() | |
self.npoint = npoint | |
self.radius_list = radius_list | |
self.nsample_list = nsample_list | |
self.conv_blocks = nn.ModuleList() | |
self.bn_blocks = nn.ModuleList() | |
for i in range(len(mlp_list)): | |
convs = nn.ModuleList() | |
bns = nn.ModuleList() | |
last_channel = in_channel + 3 | |
for out_channel in mlp_list[i]: | |
convs.append(nn.Conv2d(last_channel, out_channel, 1)) | |
bns.append(nn.BatchNorm2d(out_channel)) | |
last_channel = out_channel | |
self.conv_blocks.append(convs) | |
self.bn_blocks.append(bns) | |
def forward(self, xyz, points): | |
""" | |
Input: | |
xyz: input points position data, [B, C, N] | |
points: input points data, [B, D, N] | |
Return: | |
new_xyz: sampled points position data, [B, C, S] | |
new_points_concat: sample points feature data, [B, D', S] | |
""" | |
xyz = xyz.permute(0, 2, 1) | |
if points is not None: | |
points = points.permute(0, 2, 1) | |
B, N, C = xyz.shape | |
S = self.npoint | |
new_xyz = index_points(xyz, farthest_point_sample(xyz, S, deterministic=not self.training)) | |
new_points_list = [] | |
for i, radius in enumerate(self.radius_list): | |
K = self.nsample_list[i] | |
group_idx = query_ball_point(radius, K, xyz, new_xyz) | |
grouped_xyz = index_points(xyz, group_idx) | |
grouped_xyz -= new_xyz.view(B, S, 1, C) | |
if points is not None: | |
grouped_points = index_points(points, group_idx) | |
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1) | |
else: | |
grouped_points = grouped_xyz | |
grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S] | |
for j in range(len(self.conv_blocks[i])): | |
conv = self.conv_blocks[i][j] | |
bn = self.bn_blocks[i][j] | |
grouped_points = F.relu(bn(conv(grouped_points))) | |
new_points = torch.max(grouped_points, 2)[0] # [B, D', S] | |
new_points_list.append(new_points) | |
new_xyz = new_xyz.permute(0, 2, 1) | |
new_points_concat = torch.cat(new_points_list, dim=1) | |
return new_xyz, new_points_concat | |
class PointNetFeaturePropagation(nn.Module): | |
def __init__(self, in_channel, mlp): | |
super(PointNetFeaturePropagation, self).__init__() | |
self.mlp_convs = nn.ModuleList() | |
self.mlp_bns = nn.ModuleList() | |
last_channel = in_channel | |
for out_channel in mlp: | |
self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1)) | |
self.mlp_bns.append(nn.BatchNorm1d(out_channel)) | |
last_channel = out_channel | |
def forward(self, xyz1, xyz2, points1, points2): | |
""" | |
Input: | |
xyz1: input points position data, [B, C, N] | |
xyz2: sampled input points position data, [B, C, S] | |
points1: input points data, [B, D, N] | |
points2: input points data, [B, D, S] | |
Return: | |
new_points: upsampled points data, [B, D', N] | |
""" | |
xyz1 = xyz1.permute(0, 2, 1) | |
xyz2 = xyz2.permute(0, 2, 1) | |
points2 = points2.permute(0, 2, 1) | |
B, N, C = xyz1.shape | |
_, S, _ = xyz2.shape | |
if S == 1: | |
interpolated_points = points2.repeat(1, N, 1) | |
else: | |
dists = square_distance(xyz1, xyz2) | |
dists, idx = dists.sort(dim=-1) | |
dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3] | |
dist_recip = 1.0 / (dists + 1e-8) | |
norm = torch.sum(dist_recip, dim=2, keepdim=True) | |
weight = dist_recip / norm | |
interpolated_points = torch.sum( | |
index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2 | |
) | |
if points1 is not None: | |
points1 = points1.permute(0, 2, 1) | |
new_points = torch.cat([points1, interpolated_points], dim=-1) | |
else: | |
new_points = interpolated_points | |
new_points = new_points.permute(0, 2, 1) | |
for i, conv in enumerate(self.mlp_convs): | |
bn = self.mlp_bns[i] | |
new_points = F.relu(bn(conv(new_points))) | |
return new_points | |