Spaces:
Running
on
Zero
Running
on
Zero
# pytorch_diffusion + derived encoder decoder | |
import math | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from einops import rearrange | |
from typing import Optional, Any | |
# from ldm.modules.attention import MemoryEfficientCrossAttention | |
# from .modules.attention import MemoryEfficientCrossAttention | |
from ldm.modules.attention import SpatialTransformer3D | |
from pdb import set_trace as st | |
from xformers.ops import MemoryEfficientAttentionFlashAttentionOp | |
from ldm.modules.attention import MemoryEfficientCrossAttention | |
from nsr.volumetric_rendering.ray_sampler import RaySampler | |
import kornia | |
import point_cloud_utils as pcu | |
try: | |
import xformers | |
import xformers.ops | |
XFORMERS_IS_AVAILBLE = True | |
except: | |
XFORMERS_IS_AVAILBLE = False | |
print("No module 'xformers'. Proceeding without it.") | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0,1,0,0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x*torch.sigmoid(x) | |
def Normalize(in_channels, num_groups=32): | |
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
class Upsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# turn off amp autocast here | |
def forward(self, x): | |
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.bfloat16, cache_enabled=True): # only handles the execusion, not data typeS | |
with torch.autocast(enabled=False, device_type='cuda'): # only handles the execusion, not data typeS | |
x = torch.nn.functional.interpolate(x.float(), scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=2, | |
padding=0) | |
def forward(self, x): | |
if self.with_conv: | |
pad = (0,1,0,1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
return x | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, | |
dropout, temb_channels=512): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, | |
out_channels) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d(out_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x+h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b,c,h,w = q.shape | |
q = q.reshape(b,c,h*w) | |
q = q.permute(0,2,1) # b,hw,c | |
k = k.reshape(b,c,h*w) # b,c,hw | |
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = w_ * (int(c)**(-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b,c,h*w) | |
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b,c,h,w) | |
h_ = self.proj_out(h_) | |
return x+h_ | |
class MemoryEfficientAttnBlock(nn.Module): | |
""" | |
Uses xformers efficient implementation, | |
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
Note: this is a single-head self-attention operation | |
""" | |
# | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.k = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.v = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.attention_op: Optional[Any] = None | |
# self.attention_op: Optional[Any] = MemoryEfficientAttentionFlashAttentionOp | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
B, C, H, W = q.shape | |
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v)) | |
q, k, v = map( | |
lambda t: t.unsqueeze(3) | |
.reshape(B, t.shape[1], 1, C) | |
.permute(0, 2, 1, 3) | |
.reshape(B * 1, t.shape[1], C) | |
.contiguous(), | |
(q, k, v), | |
) | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
out = ( | |
out.unsqueeze(0) | |
.reshape(B, 1, out.shape[1], C) | |
.permute(0, 2, 1, 3) | |
.reshape(B, out.shape[1], C) | |
) | |
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C) | |
out = self.proj_out(out) | |
return x+out | |
# class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): | |
# def forward(self, x, context=None, mask=None): | |
# b, c, h, w = x.shape | |
# x = rearrange(x, 'b c h w -> b (h w) c') | |
# out = super().forward(x, context=context, mask=mask) | |
# out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c) | |
# return x + out | |
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): | |
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none", "mv-vanilla"], f'attn_type {attn_type} unknown' | |
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla": | |
attn_type = "vanilla-xformers" | |
print(f"making attention of type '{attn_type}' with {in_channels} in_channels") | |
if attn_type == "vanilla": | |
assert attn_kwargs is None | |
return AttnBlock(in_channels) | |
elif attn_type == "mv-vanilla": | |
assert attn_kwargs is not None | |
return SpatialTransformer3D(in_channels, **attn_kwargs) # TODO | |
elif attn_type == "vanilla-xformers": | |
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") | |
return MemoryEfficientAttnBlock(in_channels) | |
elif type == "memory-efficient-cross-attn": | |
attn_kwargs["query_dim"] = in_channels | |
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) | |
elif attn_type == "none": | |
return nn.Identity(in_channels) | |
else: | |
raise NotImplementedError() | |
class Model(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla", attn_kwargs={}): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = self.ch*4 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.use_timestep = use_timestep | |
if self.use_timestep: | |
# timestep embedding | |
self.temb = nn.Module() | |
self.temb.dense = nn.ModuleList([ | |
torch.nn.Linear(self.ch, | |
self.temb_ch), | |
torch.nn.Linear(self.temb_ch, | |
self.temb_ch), | |
]) | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
skip_in = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
if i_block == self.num_res_blocks: | |
skip_in = ch*in_ch_mult[i_level] | |
block.append(ResnetBlock(in_channels=block_in+skip_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x, t=None, context=None): | |
#assert x.shape[2] == x.shape[3] == self.resolution | |
if context is not None: | |
# assume aligned context, cat along channel axis | |
x = torch.cat((x, context), dim=1) | |
if self.use_timestep: | |
# timestep embedding | |
assert t is not None | |
temb = get_timestep_embedding(t, self.ch) | |
temb = self.temb.dense[0](temb) | |
temb = nonlinearity(temb) | |
temb = self.temb.dense[1](temb) | |
else: | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions-1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block]( | |
torch.cat([h, hs.pop()], dim=1), temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
def get_last_layer(self): | |
return self.conv_out.weight | |
class Encoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, | |
z_channels, double_z=True, | |
use_linear_attn=False, attn_type="vanilla", | |
attn_kwargs={}, | |
add_fusion_layer=False, | |
**ignore_kwargs): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.z_channels = z_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, | |
self.ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,)+tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch*in_ch_mult[i_level] | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions-1: | |
down.downsample = Downsample(block_in, resamp_with_conv) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, attn_kwargs=attn_kwargs) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# TODO: use attention-based? Later. | |
if add_fusion_layer: # fusion 4 frames | |
self.fusion_layer = torch.nn.Conv2d(2*z_channels*4 if double_z else z_channels*4, | |
2*z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x, **kwargs): | |
# timestep embedding | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions-1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h, **kwargs) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class MVEncoder(Encoder): | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
add_fusion_layer=True, | |
**ignore_kwargs) | |
self.num_frames = 4 | |
def forward(self, x): | |
h = super().forward(x, num_frames=self.num_frames) | |
# multi-view aggregation, as in pixel-nerf | |
h = h.chunk(x.shape[0] // self.num_frames) # features from the same single instance aggregated here | |
# h = [feat.max(keepdim=True, dim=0)[0] for feat in h] # max pooling | |
h = [self.fusion_layer(torch.cat(feat.chunk(feat.shape[0]), dim=1)) for feat in h] # conv pooling | |
return torch.cat(h, dim=0) | |
# return torch.cat(h, dim=0).to(torch.float32) | |
class MVEncoderGS(Encoder): | |
# support pixle-aligned rendering | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
add_fusion_layer=False, | |
**ignore_kwargs) | |
self.num_frames = 4 | |
def forward(self, x): | |
h = super().forward(x, num_frames=self.num_frames) | |
# multi-view aggregation, as in pixel-nerf | |
h = h.chunk(x.shape[0] // self.num_frames) # features from the same single instance aggregated here | |
# st() | |
# concat | |
# torch.cat(latent, 1) | |
h = [rearrange(latent, 'B C H W -> 1 (B C) H W') for latent in h] # basically concat | |
h = torch.cat(h, dim=0) | |
return h # B 16 H W when V=4, z_channels=2 | |
class MVEncoderGSDynamicInp(Encoder): | |
# support dynamic length input, e.g., up to 40 views during training/inference. | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", num_frames, **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
add_fusion_layer=False, | |
**ignore_kwargs) | |
self.num_frames = num_frames | |
def forward(self, x, num_frames=None): | |
h = super().forward(x, num_frames=self.num_frames) | |
# multi-view aggregation, as in pixel-nerf | |
if num_frames is None: | |
num_frames = self.num_frames # 4 for now, test later. | |
assert num_frames > 4 | |
h = h.chunk(x.shape[0] // num_frames) # features from the same single instance aggregated here | |
h = [feat.mean(keepdim=True, dim=0) for feat in h] # average pooling, 1 C H W for each h | |
return torch.cat(h, dim=0) | |
# unproject VAE latent here, since SD-VAE latent 0almost pixel aligned. | |
class MVEncoderUnprojRGB(Encoder): | |
# support dynamic length input, e.g., up to 40 views during training/inference. | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", num_frames, latent_num=768*3, **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
add_fusion_layer=False, | |
**ignore_kwargs) | |
self.num_frames = num_frames | |
# self.ray_sampler = RaySampler() | |
self.mean_filter = lambda x: kornia.filters.box_blur(x, (8,8)) # f=8 | |
self.conv_out = nn.Identity() | |
self.latent_num = latent_num # 768 * 3 by default | |
def forward(self, x, c, depth, num_frames=None): | |
if num_frames is None: | |
num_frames = self.num_frames | |
assert num_frames >=6 | |
h = super().forward(x, num_frames=self.num_frames) # ! support data augmentation, different FPS different latent corresponding to the same instance? | |
# 1. unproj tokens | |
# query = | |
# 2. fps sampling, 768*3 latents here from 32x32x9 overall tokens & record the xyz. | |
_, fps_idx = pytorch3d.ops.sample_farthest_points( | |
gt_pos.unsqueeze(0), K=self.latent_num) | |
# 2.5 Cross attend. | |
# 3. add vit TX (5 layers, concat xyz-PE) | |
# 4. tokens apply VAE (separate? check later.) | |
st() | |
class MVEncoderGSDynamicInp_CA(Encoder): | |
# support dynamic length input, e.g., up to 40 views during training/inference. | |
def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="mv-vanilla", num_frames, **ignore_kwargs): | |
super().__init__(ch=ch, out_ch=out_ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, in_channels=in_channels, resolution=resolution, z_channels=z_channels, double_z=double_z, use_linear_attn=use_linear_attn, attn_type=attn_type, | |
add_fusion_layer=False, | |
**ignore_kwargs) | |
self.num_frames = num_frames | |
query_dim = z_channels*(1+double_z) | |
self.readout_ca = MemoryEfficientCrossAttention( | |
query_dim, | |
2*z_channels if double_z else z_channels, | |
) | |
self.latent_embedding = nn.Parameter( | |
torch.randn(1, 32 * 32 * 3, query_dim)) | |
def forward(self, x, num_frames=None): | |
x = super().forward(x, num_frames=self.num_frames) | |
# multi-view aggregation, as in pixel-nerf | |
if num_frames is None: | |
num_frames = self.num_frames # 4 for now, test later. | |
x = rearrange(x, '(B V) C H W -> B (V H W) C', V=self.num_frames) # for cross-attention | |
x = self.readout_ca(self.latent_embedding.repeat(x.shape[0], 1, 1), x) | |
x = rearrange(x, 'B (N H W) C -> B C (N H) W', H=32, W=32, N=3) | |
return x | |
class Decoder(nn.Module): | |
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, | |
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, | |
attn_type="vanilla-xformers", **ignorekwargs): | |
super().__init__() | |
if use_linear_attn: attn_type = "linear" | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
self.tanh_out = tanh_out | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,)+tuple(ch_mult) | |
block_in = ch*ch_mult[self.num_resolutions-1] | |
curr_res = resolution // 2**(self.num_resolutions-1) | |
self.z_shape = (1,z_channels,curr_res,curr_res) | |
print("Working with z of shape {} = {} dimensions.".format( | |
self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, | |
block_in, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, | |
out_channels=block_in, | |
temb_channels=self.temb_ch, | |
dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch*ch_mult[i_level] | |
for i_block in range(self.num_res_blocks+1): | |
block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(make_attn(block_in, attn_type=attn_type)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in, resamp_with_conv) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_ch, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, z): | |
#assert z.shape[1:] == self.z_shape[1:] | |
self.last_z_shape = z.shape | |
# timestep embedding | |
temb = None | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h, temb) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks+1): | |
h = self.up[i_level].block[i_block](h, temb) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
if self.tanh_out: | |
h = torch.tanh(h) | |
return h | |
class SimpleDecoder(nn.Module): | |
def __init__(self, in_channels, out_channels, *args, **kwargs): | |
super().__init__() | |
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1), | |
ResnetBlock(in_channels=in_channels, | |
out_channels=2 * in_channels, | |
temb_channels=0, dropout=0.0), | |
ResnetBlock(in_channels=2 * in_channels, | |
out_channels=4 * in_channels, | |
temb_channels=0, dropout=0.0), | |
ResnetBlock(in_channels=4 * in_channels, | |
out_channels=2 * in_channels, | |
temb_channels=0, dropout=0.0), | |
nn.Conv2d(2*in_channels, in_channels, 1), | |
Upsample(in_channels, with_conv=True)]) | |
# end | |
self.norm_out = Normalize(in_channels) | |
self.conv_out = torch.nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
for i, layer in enumerate(self.model): | |
if i in [1,2,3]: | |
x = layer(x, None) | |
else: | |
x = layer(x) | |
h = self.norm_out(x) | |
h = nonlinearity(h) | |
x = self.conv_out(h) | |
return x | |
class UpsampleDecoder(nn.Module): | |
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, | |
ch_mult=(2,2), dropout=0.0): | |
super().__init__() | |
# upsampling | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
block_in = in_channels | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.res_blocks = nn.ModuleList() | |
self.upsample_blocks = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
res_block = [] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
res_block.append(ResnetBlock(in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout)) | |
block_in = block_out | |
self.res_blocks.append(nn.ModuleList(res_block)) | |
if i_level != self.num_resolutions - 1: | |
self.upsample_blocks.append(Upsample(block_in, True)) | |
curr_res = curr_res * 2 | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
def forward(self, x): | |
# upsampling | |
h = x | |
for k, i_level in enumerate(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.res_blocks[i_level][i_block](h, None) | |
if i_level != self.num_resolutions - 1: | |
h = self.upsample_blocks[k](h) | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class LatentRescaler(nn.Module): | |
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): | |
super().__init__() | |
# residual block, interpolate, residual block | |
self.factor = factor | |
self.conv_in = nn.Conv2d(in_channels, | |
mid_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, | |
out_channels=mid_channels, | |
temb_channels=0, | |
dropout=0.0) for _ in range(depth)]) | |
self.attn = AttnBlock(mid_channels) | |
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels, | |
out_channels=mid_channels, | |
temb_channels=0, | |
dropout=0.0) for _ in range(depth)]) | |
self.conv_out = nn.Conv2d(mid_channels, | |
out_channels, | |
kernel_size=1, | |
) | |
def forward(self, x): | |
x = self.conv_in(x) | |
for block in self.res_block1: | |
x = block(x, None) | |
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor)))) | |
x = self.attn(x) | |
for block in self.res_block2: | |
x = block(x, None) | |
x = self.conv_out(x) | |
return x | |
class MergedRescaleEncoder(nn.Module): | |
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks, | |
attn_resolutions, dropout=0.0, resamp_with_conv=True, | |
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1): | |
super().__init__() | |
intermediate_chn = ch * ch_mult[-1] | |
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult, | |
z_channels=intermediate_chn, double_z=False, resolution=resolution, | |
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv, | |
out_ch=None) | |
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn, | |
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth) | |
def forward(self, x): | |
x = self.encoder(x) | |
x = self.rescaler(x) | |
return x | |
class MergedRescaleDecoder(nn.Module): | |
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8), | |
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1): | |
super().__init__() | |
tmp_chn = z_channels*ch_mult[-1] | |
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout, | |
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks, | |
ch_mult=ch_mult, resolution=resolution, ch=ch) | |
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn, | |
out_channels=tmp_chn, depth=rescale_module_depth) | |
def forward(self, x): | |
x = self.rescaler(x) | |
x = self.decoder(x) | |
return x | |
class Upsampler(nn.Module): | |
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): | |
super().__init__() | |
assert out_size >= in_size | |
num_blocks = int(np.log2(out_size//in_size))+1 | |
factor_up = 1.+ (out_size % in_size) | |
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}") | |
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels, | |
out_channels=in_channels) | |
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2, | |
attn_resolutions=[], in_channels=None, ch=in_channels, | |
ch_mult=[ch_mult for _ in range(num_blocks)]) | |
def forward(self, x): | |
x = self.rescaler(x) | |
x = self.decoder(x) | |
return x | |
class Resize(nn.Module): | |
def __init__(self, in_channels=None, learned=False, mode="bilinear"): | |
super().__init__() | |
self.with_conv = learned | |
self.mode = mode | |
if self.with_conv: | |
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode") | |
raise NotImplementedError() | |
assert in_channels is not None | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d(in_channels, | |
in_channels, | |
kernel_size=4, | |
stride=2, | |
padding=1) | |
def forward(self, x, scale_factor=1.0): | |
if scale_factor==1.0: | |
return x | |
else: | |
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor) | |
return x | |
# ! lgm unet |