dummy_m4 / m4 /models /vllama /configuration_vllama.py
ysharma's picture
ysharma HF staff
Duplicate from HuggingFaceM4/m4-dialogue
e7d3e35
raw
history blame
8.86 kB
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LLaMA model configuration"""
import os
from typing import Tuple, Union
from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class VLlamaConfig(PretrainedConfig):
r"""
TODO: update docstring with respect to new arguments
This is the configuration class to store the configuration of a [`~LlamaModel`]. It is used to instantiate an LLaMA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the LLaMA-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~LlamaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
```python
>>> from transformers import LlamaModel, LlamaConfig
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vllama"
def __init__(
self,
vocab_size=32000,
additional_vocab_size=0,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
dropout=0.0,
hidden_act="silu",
initializer_range=0.02,
alpha_initializer="ones",
alphas_initializer_range=0.0,
alpha_type="vector",
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
cross_layer_interval=1,
cross_layer_activation_function="swiglu",
qk_layer_norms=False,
qk_layer_norms_perceiver=False,
freeze_text_layers=True,
freeze_text_module_exceptions=[],
freeze_lm_head=False,
freeze_vision_layers=True,
freeze_vision_module_exceptions=[],
vision_model_name="google/vit-base-patch16-224",
vision_model_params="{}",
vision_embed_dim=768,
vision_image_size=224,
use_resampler=False,
resampler_n_latents=64,
resampler_depth=6,
resampler_n_heads=16,
resampler_head_dim=96,
**kwargs,
):
self.vocab_size = vocab_size
self.additional_vocab_size = additional_vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.dropout = dropout
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.alpha_initializer = alpha_initializer
self.alphas_initializer_range = alphas_initializer_range
self.alpha_type = alpha_type
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.cross_layer_interval = cross_layer_interval
self.cross_layer_activation_function = cross_layer_activation_function
self.qk_layer_norms = qk_layer_norms
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
self.freeze_vision_layers = freeze_vision_layers
self.vision_model_name = vision_model_name
self.vision_model_params = vision_model_params
self.freeze_text_layers = freeze_text_layers
self.freeze_text_module_exceptions = freeze_text_module_exceptions
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
self.freeze_lm_head = freeze_lm_head
self.vision_embed_dim = vision_embed_dim
self.vision_image_size = vision_image_size
# Resampler params
self.use_resampler = use_resampler
self.resampler_n_latents = resampler_n_latents
self.resampler_depth = resampler_depth
self.resampler_n_heads = resampler_n_heads
self.resampler_head_dim = resampler_head_dim
# IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
# PretrainedConfig.from_dict first instantiates the class with the config dict and only then
# updates the config object with `kwargs` from from_pretrained, so during the instantiation
# of this object many attributes have default values and haven't yet been overridden.
# Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
def check_compatibilities(self):
vision_model_params = eval(self.vision_model_params)
config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
if hasattr(config, "vision_config"):
vision_config = config.vision_config
else:
vision_config = config
vision_embed_dim = vision_config.hidden_size
if self.vision_embed_dim != vision_embed_dim:
raise ValueError(
f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
f" ({vision_embed_dim})"
)
vision_image_size = vision_config.image_size
if self.vision_image_size != vision_image_size:
raise ValueError(
f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model"
f" ({vision_image_size})"
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
outputs = super(VLlamaConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
if isinstance(outputs, Tuple):
# When called with return_unused_kwargs=True, the first item will be the config
outputs[0].check_compatibilities()
else:
outputs.check_compatibilities()
return outputs