Spaces:
Runtime error
Runtime error
import torch | |
from torch_geometric.nn import MessagePassing | |
from torch_geometric.utils import add_self_loops, degree, softmax, to_dense_batch | |
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set | |
import torch.nn.functional as F | |
# from torch_scatter import scatter_add | |
from torch_geometric.nn.inits import glorot, zeros | |
num_atom_type = 120 #including the extra mask tokens | |
num_chirality_tag = 3 | |
num_bond_type = 6 #including aromatic and self-loop edge, and extra masked tokens | |
num_bond_direction = 3 | |
class GINConv(MessagePassing): | |
""" | |
Extension of GIN aggregation to incorporate edge information by concatenation. | |
Args: | |
emb_dim (int): dimensionality of embeddings for nodes and edges. | |
embed_input (bool): whether to embed input or not. | |
See https://arxiv.org/abs/1810.00826 | |
""" | |
def __init__(self, emb_dim, aggr = "add"): | |
super(GINConv, self).__init__(aggr = "add") | |
#multi-layer perceptron | |
self.mlp = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim), torch.nn.ReLU(), torch.nn.Linear(2*emb_dim, emb_dim)) | |
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim) | |
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim) | |
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data) | |
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data) | |
self.aggr = aggr | |
def forward(self, x, edge_index, edge_attr): | |
#add self loops in the edge space | |
# print('--------------------') | |
# print('x:', x.shape) | |
# print('edge_index:',edge_index.shape) | |
edge_index, edge_attr = add_self_loops(edge_index, edge_attr, fill_value=0, num_nodes = x.size(0)) | |
#add features corresponding to self-loop edges. | |
# self_loop_attr = torch.zeros(x.size(0), 2) | |
# self_loop_attr[:,0] = 4 #bond type for self-loop edge | |
# self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype) | |
# print('edge_attr:',edge_attr.shape) | |
# print('self_loop_attr:',self_loop_attr.shape) | |
# print('--------------------') | |
# edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0) | |
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1]) | |
return self.propagate(edge_index, x=x, edge_attr=edge_embeddings) | |
def message(self, x_j, edge_attr): | |
return x_j + edge_attr | |
def update(self, aggr_out): | |
return self.mlp(aggr_out) | |
class GCNConv(MessagePassing): | |
def __init__(self, emb_dim, aggr = "add"): | |
super(GCNConv, self).__init__() | |
self.emb_dim = emb_dim | |
self.linear = torch.nn.Linear(emb_dim, emb_dim) | |
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim) | |
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim) | |
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data) | |
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data) | |
self.aggr = aggr | |
def norm(self, edge_index, num_nodes, dtype): | |
### assuming that self-loops have been already added in edge_index | |
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, | |
device=edge_index.device) | |
row, col = edge_index | |
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) | |
deg_inv_sqrt = deg.pow(-0.5) | |
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 | |
return deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] | |
def forward(self, x, edge_index, edge_attr): | |
#add self loops in the edge space | |
edge_index = add_self_loops(edge_index, num_nodes = x.size(0)) | |
#add features corresponding to self-loop edges. | |
self_loop_attr = torch.zeros(x.size(0), 2) | |
self_loop_attr[:,0] = 4 #bond type for self-loop edge | |
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype) | |
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0) | |
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1]) | |
norm = self.norm(edge_index, x.size(0), x.dtype) | |
x = self.linear(x) | |
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings, norm = norm) | |
def message(self, x_j, edge_attr, norm): | |
return norm.view(-1, 1) * (x_j + edge_attr) | |
class GATConv(MessagePassing): | |
def __init__(self, emb_dim, heads=2, negative_slope=0.2, aggr = "add"): | |
super(GATConv, self).__init__() | |
self.aggr = aggr | |
self.emb_dim = emb_dim | |
self.heads = heads | |
self.negative_slope = negative_slope | |
self.weight_linear = torch.nn.Linear(emb_dim, heads * emb_dim) | |
self.att = torch.nn.Parameter(torch.Tensor(1, heads, 2 * emb_dim)) | |
self.bias = torch.nn.Parameter(torch.Tensor(emb_dim)) | |
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, heads * emb_dim) | |
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, heads * emb_dim) | |
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data) | |
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data) | |
self.reset_parameters() | |
def reset_parameters(self): | |
glorot(self.att) | |
zeros(self.bias) | |
def forward(self, x, edge_index, edge_attr): | |
#add self loops in the edge space | |
edge_index = add_self_loops(edge_index, num_nodes = x.size(0)) | |
#add features corresponding to self-loop edges. | |
self_loop_attr = torch.zeros(x.size(0), 2) | |
self_loop_attr[:,0] = 4 #bond type for self-loop edge | |
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype) | |
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0) | |
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1]) | |
x = self.weight_linear(x).view(-1, self.heads, self.emb_dim) | |
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings) | |
def message(self, edge_index, x_i, x_j, edge_attr): | |
edge_attr = edge_attr.view(-1, self.heads, self.emb_dim) | |
x_j += edge_attr | |
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1) | |
alpha = F.leaky_relu(alpha, self.negative_slope) | |
alpha = softmax(alpha, edge_index[0]) | |
return x_j * alpha.view(-1, self.heads, 1) | |
def update(self, aggr_out): | |
aggr_out = aggr_out.mean(dim=1) | |
aggr_out = aggr_out + self.bias | |
return aggr_out | |
class GraphSAGEConv(MessagePassing): | |
def __init__(self, emb_dim, aggr = "mean"): | |
super(GraphSAGEConv, self).__init__() | |
self.emb_dim = emb_dim | |
self.linear = torch.nn.Linear(emb_dim, emb_dim) | |
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim) | |
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim) | |
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data) | |
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data) | |
self.aggr = aggr | |
def forward(self, x, edge_index, edge_attr): | |
#add self loops in the edge space | |
edge_index = add_self_loops(edge_index, num_nodes = x.size(0)) | |
#add features corresponding to self-loop edges. | |
self_loop_attr = torch.zeros(x.size(0), 2) | |
self_loop_attr[:,0] = 4 #bond type for self-loop edge | |
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype) | |
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0) | |
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1]) | |
x = self.linear(x) | |
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings) | |
def message(self, x_j, edge_attr): | |
return x_j + edge_attr | |
def update(self, aggr_out): | |
return F.normalize(aggr_out, p = 2, dim = -1) | |
class GNN(torch.nn.Module): | |
""" | |
Args: | |
num_layer (int): the number of GNN layers | |
emb_dim (int): dimensionality of embeddings | |
JK (str): last, concat, max or sum. | |
max_pool_layer (int): the layer from which we use max pool rather than add pool for neighbor aggregation | |
drop_ratio (float): dropout rate | |
gnn_type: gin, gcn, graphsage, gat | |
Output: | |
node representations | |
""" | |
def __init__(self, num_layer, emb_dim, JK = "last", drop_ratio = 0, gnn_type = "gin"): | |
super(GNN, self).__init__() | |
self.num_layer = num_layer | |
self.drop_ratio = drop_ratio | |
self.JK = JK | |
if self.num_layer < 2: | |
raise ValueError("Number of GNN layers must be greater than 1.") | |
self.x_embedding1 = torch.nn.Embedding(num_atom_type, emb_dim) | |
self.x_embedding2 = torch.nn.Embedding(num_chirality_tag, emb_dim) | |
torch.nn.init.xavier_uniform_(self.x_embedding1.weight.data) | |
torch.nn.init.xavier_uniform_(self.x_embedding2.weight.data) | |
###List of MLPs | |
self.gnns = torch.nn.ModuleList() | |
for layer in range(num_layer): | |
if gnn_type == "gin": | |
self.gnns.append(GINConv(emb_dim, aggr = "add")) | |
elif gnn_type == "gcn": | |
self.gnns.append(GCNConv(emb_dim)) | |
elif gnn_type == "gat": | |
self.gnns.append(GATConv(emb_dim)) | |
elif gnn_type == "graphsage": | |
self.gnns.append(GraphSAGEConv(emb_dim)) | |
self.pool = global_mean_pool | |
###List of batchnorms | |
self.batch_norms = torch.nn.ModuleList() | |
for layer in range(num_layer): | |
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim)) | |
self.num_features = emb_dim | |
self.cat_grep = True | |
#def forward(self, x, edge_index, edge_attr): | |
def forward(self, *argv): | |
if len(argv) == 3: | |
x, edge_index, edge_attr = argv[0], argv[1], argv[2] | |
elif len(argv) == 1: | |
data = argv[0] | |
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch | |
else: | |
raise ValueError("unmatched number of arguments.") | |
x = self.x_embedding1(x[:,0]) + self.x_embedding2(x[:,1]) | |
h_list = [x] | |
for layer in range(self.num_layer): | |
h = self.gnns[layer](h_list[layer], edge_index, edge_attr) | |
h = self.batch_norms[layer](h) | |
#h = F.dropout(F.relu(h), self.drop_ratio, training = self.training) | |
if layer == self.num_layer - 1: | |
#remove relu for the last layer | |
h = F.dropout(h, self.drop_ratio, training = self.training) | |
else: | |
h = F.dropout(F.relu(h), self.drop_ratio, training = self.training) | |
h_list.append(h) | |
### Different implementations of Jk-concat | |
if self.JK == "concat": | |
node_representation = torch.cat(h_list, dim = 1) | |
elif self.JK == "last": | |
node_representation = h_list[-1] | |
elif self.JK == "max": | |
h_list = [h.unsqueeze_(0) for h in h_list] | |
node_representation = torch.max(torch.cat(h_list, dim = 0), dim = 0)[0] | |
elif self.JK == "sum": | |
h_list = [h.unsqueeze_(0) for h in h_list] | |
node_representation = torch.sum(torch.cat(h_list, dim=0), dim=0)[0] | |
h_graph = self.pool(node_representation, batch) # shape = [B, D] | |
batch_node, batch_mask = to_dense_batch(node_representation, batch) # shape = [B, n_max, D], | |
batch_mask = batch_mask.bool() | |
if self.cat_grep: | |
batch_node = torch.cat((h_graph.unsqueeze(1), batch_node), dim=1) # shape = [B, n_max+1, D] | |
batch_mask = torch.cat([torch.ones((batch_mask.shape[0], 1), dtype=torch.bool, device=batch.device), batch_mask], dim=1) | |
return batch_node, batch_mask | |
else: | |
return batch_node, batch_mask, h_graph | |
class GNN_graphpred(torch.nn.Module): | |
""" | |
Extension of GIN to incorporate edge information by concatenation. | |
Args: | |
num_layer (int): the number of GNN layers | |
emb_dim (int): dimensionality of embeddings | |
num_tasks (int): number of tasks in multi-task learning scenario | |
drop_ratio (float): dropout rate | |
JK (str): last, concat, max or sum. | |
graph_pooling (str): sum, mean, max, attention, set2set | |
gnn_type: gin, gcn, graphsage, gat | |
See https://arxiv.org/abs/1810.00826 | |
JK-net: https://arxiv.org/abs/1806.03536 | |
""" | |
def __init__(self, num_layer, emb_dim, num_tasks, JK = "last", drop_ratio = 0, graph_pooling = "mean", gnn_type = "gin"): | |
super(GNN_graphpred, self).__init__() | |
self.num_layer = num_layer | |
self.drop_ratio = drop_ratio | |
self.JK = JK | |
self.emb_dim = emb_dim | |
self.num_tasks = num_tasks | |
if self.num_layer < 2: | |
raise ValueError("Number of GNN layers must be greater than 1.") | |
self.gnn = GNN(num_layer, emb_dim, JK, drop_ratio, gnn_type = gnn_type) | |
#Different kind of graph pooling | |
if graph_pooling == "sum": | |
self.pool = global_add_pool | |
elif graph_pooling == "mean": | |
self.pool = global_mean_pool | |
elif graph_pooling == "max": | |
self.pool = global_max_pool | |
elif graph_pooling == "attention": | |
if self.JK == "concat": | |
self.pool = GlobalAttention(gate_nn = torch.nn.Linear((self.num_layer + 1) * emb_dim, 1)) | |
else: | |
self.pool = GlobalAttention(gate_nn = torch.nn.Linear(emb_dim, 1)) | |
elif graph_pooling[:-1] == "set2set": | |
set2set_iter = int(graph_pooling[-1]) | |
if self.JK == "concat": | |
self.pool = Set2Set((self.num_layer + 1) * emb_dim, set2set_iter) | |
else: | |
self.pool = Set2Set(emb_dim, set2set_iter) | |
else: | |
raise ValueError("Invalid graph pooling type.") | |
#For graph-level binary classification | |
if graph_pooling[:-1] == "set2set": | |
self.mult = 2 | |
else: | |
self.mult = 1 | |
if self.JK == "concat": | |
self.graph_pred_linear = torch.nn.Linear(self.mult * (self.num_layer + 1) * self.emb_dim, self.num_tasks) | |
else: | |
self.graph_pred_linear = torch.nn.Linear(self.mult * self.emb_dim, self.num_tasks) | |
def from_pretrained(self, model_file): | |
#self.gnn = GNN(self.num_layer, self.emb_dim, JK = self.JK, drop_ratio = self.drop_ratio) | |
missing_keys, unexpected_keys = self.gnn.load_state_dict(torch.load(model_file)) | |
print(missing_keys) | |
print(unexpected_keys) | |
def forward(self, *argv): | |
if len(argv) == 4: | |
x, edge_index, edge_attr, batch = argv[0], argv[1], argv[2], argv[3] | |
elif len(argv) == 1: | |
data = argv[0] | |
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch | |
else: | |
raise ValueError("unmatched number of arguments.") | |
node_representation = self.gnn(x, edge_index, edge_attr) | |
return self.graph_pred_linear(self.pool(node_representation, batch)) | |
if __name__ == "__main__": | |
pass | |