Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer,AutoFeatureExtractor | |
from datasets import load_dataset, Audio | |
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# dataset = load_dataset("rotten_tomatoes", split="train") | |
# print(tokenizer(dataset[0]["text"])) | |
# def tokenization(example): | |
# return tokenizer(example["text"]) | |
# dataset = dataset.map(tokenization, batched=True) | |
# feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") | |
# dataset = load_dataset("PolyAI/minds14", "en-US", split="train") | |
# print(dataset[0]["audio"]) | |
# dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) | |
# print(dataset[0]["audio"]) | |
# def preprocess_function(examples): | |
# audio_arrays = [x["array"] for x in examples["audio"]] | |
# inputs = feature_extractor( | |
# audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True | |
# ) | |
# return inputs | |
# dataset = dataset.map(preprocess_function, batched=True) | |
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
dataset = load_dataset("beans", split="train") | |
print(dataset[0]["image"]) | |
from torchvision.transforms import RandomRotation | |
rotate = RandomRotation(degrees=(0, 90)) | |
def transforms(examples): | |
examples["pixel_values"] = [rotate(image.convert("RGB")) for image in examples["image"]] | |
return examples | |
dataset.set_transform(transforms) | |
print(dataset[0]["pixel_values"]) |