ymzhang319's picture
init
7f2690b
raw
history blame
13.4 kB
import torch
import torchaudio
import torch.nn.functional as F
import numpy as np
from scipy.signal import get_window
import librosa.util as librosa_util
from librosa.util import pad_center, tiny
from librosa.filters import mel as librosa_mel_fn
import io
# spectrogram to mel
class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
def __init__(self, filter_length, hop_length, win_length, window="hann"):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack(
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
)
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
)
if window is not None:
assert filter_length >= win_length
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())
def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)
self.num_samples = num_samples
# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode="reflect",
)
input_data = input_data.squeeze(1)
forward_transform = F.conv1d(
input_data,
torch.autograd.Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
).cpu()
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
)
if self.window is not None:
window_sum = window_sumsquare(
self.window,
magnitude.size(-1),
hop_length=self.hop_length,
win_length=self.win_length,
n_fft=self.filter_length,
dtype=np.float32,
)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0]
)
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False
)
window_sum = window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
approx_nonzero_indices
]
# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
return inverse_transform
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
def window_sumsquare(
window,
n_frames,
hop_length,
win_length,
n_fft,
dtype=np.float32,
norm=None,
):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
return x
def griffin_lim(magnitudes, stft_fn, n_iters=30):
"""
PARAMS
------
magnitudes: spectrogram magnitudes
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
"""
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
angles = angles.astype(np.float32)
angles = torch.autograd.Variable(torch.from_numpy(angles))
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
for i in range(n_iters):
_, angles = stft_fn.transform(signal)
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
return signal
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return normalize_fun(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
class TacotronSTFT(torch.nn.Module):
def __init__(
self,
filter_length,
hop_length,
win_length,
n_mel_channels,
sampling_rate,
mel_fmin,
mel_fmax,
):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
def spectral_normalize(self, magnitudes, normalize_fun):
output = dynamic_range_compression(magnitudes, normalize_fun)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y, normalize_fun=torch.log):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert torch.min(y.data) >= -1, torch.min(y.data)
assert torch.max(y.data) <= 1, torch.max(y.data)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output, normalize_fun)
energy = torch.norm(magnitudes, dim=1)
log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
return mel_output, log_magnitudes, energy
def pad_wav(waveform, segment_length):
waveform_length = waveform.shape[-1]
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
if segment_length is None or waveform_length == segment_length:
return waveform
elif waveform_length > segment_length:
return waveform[:,:segment_length]
elif waveform_length < segment_length:
temp_wav = np.zeros((1, segment_length))
temp_wav[:, :waveform_length] = waveform
return temp_wav
def normalize_wav(waveform):
waveform = waveform - np.mean(waveform)
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
return waveform * 0.5
def _pad_spec(fbank, target_length=1024):
n_frames = fbank.shape[0]
p = target_length - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
if fbank.size(-1) % 2 != 0:
fbank = fbank[..., :-1]
return fbank
def get_mel_from_wav(audio, _stft):
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
log_magnitudes_stft = (
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
)
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
return melspec, log_magnitudes_stft, energy
def read_wav_file_io(bytes):
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
waveform, sr = torchaudio.load(bytes, format='mp4') # Faster!!!
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
# waveform = waveform.numpy()[0, ...]
# waveform = normalize_wav(waveform)
# waveform = waveform[None, ...]
# waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
# waveform = 0.5 * waveform
return waveform
def load_audio(bytes, sample_rate=16000):
waveform, sr = torchaudio.load(bytes, format='mp4')
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
return waveform
def read_wav_file(filename):
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
waveform, sr = torchaudio.load(filename) # Faster!!!
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
waveform = waveform.numpy()[0, ...]
waveform = normalize_wav(waveform)
waveform = waveform[None, ...]
waveform = waveform / np.max(np.abs(waveform))
waveform = 0.5 * waveform
return waveform
def norm_wav_tensor(waveform: torch.FloatTensor):
waveform = waveform.numpy()[0, ...]
waveform = normalize_wav(waveform)
waveform = waveform[None, ...]
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
waveform = 0.5 * waveform
return waveform
def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
if fn_STFT is None:
fn_STFT = TacotronSTFT(
1024, # filter_length
160, # hop_length
1024, # win_length
64, # n_mel
16000, # sample_rate
0, # fmin
8000, # fmax
)
# mixup
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
waveform = waveform[0, ...]
waveform = torch.FloatTensor(waveform)
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = torch.FloatTensor(fbank.T)
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform
def wav_tensor_to_fbank(waveform, target_length=512, fn_STFT=None):
if fn_STFT is None:
fn_STFT = TacotronSTFT(
1024, # filter_length
160, # hop_length
1024, # win_length
256, # n_mel
16000, # sample_rate
0, # fmin
8000, # fmax
) # In practice used
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = torch.FloatTensor(fbank.T)
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank