add compression leaderboard
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +10 -249
- app_compression.py +127 -0
- app_playground.py +248 -0
- css/style.css +24 -1
- examples.py +1 -1
- patcher/gr_interface.py +59 -0
- tokenizer/sptokenizer_patch.py → patcher/sptokenizer_patch_deprecated.py +12 -4
- patcher/sptokenizer_wrapper.py +61 -0
- {tokenizer → patcher}/tiktoken_patch.py +5 -0
- stats/compress_rate.json +1868 -0
- stats/compress_rate/amber.en.json +0 -1
- stats/compress_rate/amber.zh-Hans.json +0 -1
- stats/compress_rate/aya_101.en.json +0 -1
- stats/compress_rate/aya_101.zh-Hans.json +0 -1
- stats/compress_rate/baichuan.en.json +0 -1
- stats/compress_rate/baichuan.zh-Hans.json +0 -1
- stats/compress_rate/baichuan2.en.json +0 -1
- stats/compress_rate/baichuan2.zh-Hans.json +0 -1
- stats/compress_rate/bert_base_cased.en.json +0 -1
- stats/compress_rate/bert_base_cased.zh-Hans.json +0 -1
- stats/compress_rate/bert_base_chinese.en.json +0 -1
- stats/compress_rate/bert_base_chinese.zh-Hans.json +0 -1
- stats/compress_rate/bert_base_uncased.en.json +0 -1
- stats/compress_rate/bert_base_uncased.zh-Hans.json +0 -1
- stats/compress_rate/bloom.en.json +0 -1
- stats/compress_rate/bloom.zh-Hans.json +0 -1
- stats/compress_rate/byt5_small.en.json +0 -1
- stats/compress_rate/byt5_small.zh-Hans.json +0 -1
- stats/compress_rate/character_glm_6b.en.json +0 -1
- stats/compress_rate/character_glm_6b.zh-Hans.json +0 -1
- stats/compress_rate/chatglm2_6b.en.json +0 -1
- stats/compress_rate/chatglm2_6b.zh-Hans.json +0 -1
- stats/compress_rate/chatglm3_6b.en.json +0 -1
- stats/compress_rate/chatglm3_6b.zh-Hans.json +0 -1
- stats/compress_rate/chatglm_6b.en.json +0 -1
- stats/compress_rate/chatglm_6b.zh-Hans.json +0 -1
- stats/compress_rate/chatyuan_large_v2.en.json +0 -1
- stats/compress_rate/chatyuan_large_v2.zh-Hans.json +0 -1
- stats/compress_rate/chinese_llama.en.json +0 -1
- stats/compress_rate/chinese_llama.zh-Hans.json +0 -1
- stats/compress_rate/chinese_llama2.en.json +0 -1
- stats/compress_rate/chinese_llama2.zh-Hans.json +0 -1
- stats/compress_rate/code_davinci_002.en.json +0 -1
- stats/compress_rate/code_davinci_002.zh-Hans.json +0 -1
- stats/compress_rate/crystal_coder.en.json +0 -1
- stats/compress_rate/crystal_coder.zh-Hans.json +0 -1
- stats/compress_rate/dbrx_instruct.en.json +0 -1
- stats/compress_rate/dbrx_instruct.zh-Hans.json +0 -1
- stats/compress_rate/deepseek_coder_33b_instruct.en.json +0 -1
- stats/compress_rate/deepseek_coder_33b_instruct.zh-Hans.json +0 -1
app.py
CHANGED
@@ -1,255 +1,16 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# author: xusong
|
3 |
-
# time: 2022/8/23 16:06
|
4 |
-
|
5 |
-
"""
|
6 |
-
## TODO:
|
7 |
-
- i18 国际化 https://blog.csdn.net/qq_26212731/article/details/78457198 request.header中也有language
|
8 |
-
- iter_vocab 的 warmup
|
9 |
-
- 开关
|
10 |
-
- add_special_token 开关
|
11 |
-
- theme 开关 light/dark
|
12 |
-
- token_id/tokens/bytes 开关
|
13 |
-
- 中文字词统计,是否要包括 _ G 等字符
|
14 |
-
- 评测
|
15 |
-
- OOV评测
|
16 |
-
- 通过 javascript 添加 hover_text
|
17 |
-
- 英文 utf-8编码
|
18 |
-
- 词典支持下载,借用image下载的标签,
|
19 |
-
- baichuan的单字数量怎么两万多个?
|
20 |
-
- qwen: ValueError: Unclosed image token
|
21 |
-
- 路径修改为全path meta-llama/Llama-2-13b-hf
|
22 |
-
|
23 |
-
plots
|
24 |
-
|
25 |
-
table
|
26 |
-
|
27 |
-
## related demo
|
28 |
-
- [](http://text-processing.com/demo/tokenize/)
|
29 |
-
- [gpt-tokenizer](https://gpt-tokenizer.dev/)
|
30 |
-
- [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
|
31 |
-
- [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
|
32 |
-
|
33 |
-
## 可视化
|
34 |
-
|
35 |
-
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
|
36 |
-
"""
|
37 |
|
38 |
import gradio as gr
|
39 |
-
from
|
40 |
-
from
|
41 |
-
from
|
42 |
-
from utils.compress_rate_util import common_units, common_corpuses
|
43 |
-
|
44 |
-
get_window_url_params = """
|
45 |
-
function(url_params) {
|
46 |
-
const params = new URLSearchParams(window.location.search);
|
47 |
-
url_params = JSON.stringify(Object.fromEntries(params));
|
48 |
-
return url_params;
|
49 |
-
}
|
50 |
-
"""
|
51 |
-
|
52 |
-
with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
|
53 |
-
gr.HTML("""<h1 align="center">Tokenizer Arena ⚔️</h1>""")
|
54 |
-
# links: https://www.coderstool.com/utf8-encoding-decoding
|
55 |
-
# 功能:输入文本,进行分词
|
56 |
-
# 分词器:常见的分词器有集中,
|
57 |
-
# 背景:方便分词、看词粒度、对比
|
58 |
-
|
59 |
-
with gr.Row():
|
60 |
-
gr.Markdown("## Input Text")
|
61 |
-
dropdown_examples = gr.Dropdown(
|
62 |
-
example_types,
|
63 |
-
type="index",
|
64 |
-
show_label=False,
|
65 |
-
container=False,
|
66 |
-
scale=0,
|
67 |
-
elem_classes="example-style"
|
68 |
-
)
|
69 |
-
user_input = gr.Textbox(
|
70 |
-
# value=default_user_input,
|
71 |
-
label="Input Text",
|
72 |
-
lines=5,
|
73 |
-
show_label=False,
|
74 |
-
)
|
75 |
-
gr.Markdown("## Tokenization")
|
76 |
-
|
77 |
-
# compress rate setting
|
78 |
-
with gr.Accordion("Compress Rate Setting", open=True):
|
79 |
-
gr.Markdown(
|
80 |
-
"Please select corpus and unit of compress rate, get more details at [github](https://github.com/xu-song/tokenizer-arena/). ")
|
81 |
-
with gr.Row():
|
82 |
-
compress_rate_corpus = gr.CheckboxGroup(
|
83 |
-
common_corpuses, # , "code"
|
84 |
-
value=["cc100-en", "cc100-zh-Hans"],
|
85 |
-
label="corpus",
|
86 |
-
# info=""
|
87 |
-
)
|
88 |
-
compress_rate_unit = gr.Radio(
|
89 |
-
common_units,
|
90 |
-
value="b_tokens/g_bytes",
|
91 |
-
label="unit",
|
92 |
-
)
|
93 |
-
# TODO: Token Setting
|
94 |
-
# with gr.Accordion("Token Filter Setting", open=False):
|
95 |
-
# gr.Markdown(
|
96 |
-
# "Get total number of tokens which contain the following character)")
|
97 |
-
# gr.Radio(
|
98 |
-
# ["zh-Hans", "", "number", "space"],
|
99 |
-
# value="zh",
|
100 |
-
# )
|
101 |
-
|
102 |
-
with gr.Row():
|
103 |
-
with gr.Column(scale=6):
|
104 |
-
with gr.Group():
|
105 |
-
tokenizer_type_1 = gr.Dropdown(
|
106 |
-
all_tokenizers,
|
107 |
-
label="Tokenizer 1",
|
108 |
-
)
|
109 |
-
with gr.Group():
|
110 |
-
"""
|
111 |
-
<div class="stat"><div class="stat-value">69</div><div class="stat-label">Characters</div></div>
|
112 |
-
"""
|
113 |
-
with gr.Row():
|
114 |
-
stats_vocab_size_1 = gr.TextArea(
|
115 |
-
label="Vocab Size",
|
116 |
-
lines=1,
|
117 |
-
elem_classes="statistics"
|
118 |
-
)
|
119 |
-
stats_zh_token_size_1 = gr.TextArea(
|
120 |
-
label="ZH char/word",
|
121 |
-
lines=1,
|
122 |
-
elem_classes="statistics",
|
123 |
-
visible=False
|
124 |
-
)
|
125 |
-
stats_compress_rate_1 = gr.TextArea(
|
126 |
-
label="Compress Rate",
|
127 |
-
lines=1,
|
128 |
-
elem_classes="statistics"
|
129 |
-
)
|
130 |
-
stats_overlap_token_size_1 = gr.TextArea(
|
131 |
-
# value=default_stats_overlap_token_size,
|
132 |
-
label="Overlap Tokens",
|
133 |
-
lines=1,
|
134 |
-
elem_classes="statistics"
|
135 |
-
)
|
136 |
-
# stats_3 = gr.TextArea(
|
137 |
-
# label="Compress Rate",
|
138 |
-
# lines=1,
|
139 |
-
# elem_classes="statistics"
|
140 |
-
# )
|
141 |
-
# https://www.onlinewebfonts.com/icon/418591
|
142 |
-
gr.Image("images/VS.svg", scale=1, show_label=False,
|
143 |
-
show_download_button=False, container=False,
|
144 |
-
show_share_button=False)
|
145 |
-
with gr.Column(scale=6):
|
146 |
-
with gr.Group():
|
147 |
-
tokenizer_type_2 = gr.Dropdown(
|
148 |
-
all_tokenizers,
|
149 |
-
label="Tokenizer 2",
|
150 |
-
)
|
151 |
-
with gr.Group():
|
152 |
-
with gr.Row():
|
153 |
-
stats_vocab_size_2 = gr.TextArea(
|
154 |
-
label="VocabSize",
|
155 |
-
lines=1,
|
156 |
-
elem_classes="statistics"
|
157 |
-
)
|
158 |
-
stats_zh_token_size_2 = gr.TextArea(
|
159 |
-
label="ZH char/word", # 中文字/词
|
160 |
-
lines=1,
|
161 |
-
elem_classes="statistics",
|
162 |
-
visible=False
|
163 |
-
)
|
164 |
-
stats_compress_rate_2 = gr.TextArea(
|
165 |
-
label="Compress Rate",
|
166 |
-
lines=1,
|
167 |
-
elem_classes="statistics"
|
168 |
-
)
|
169 |
-
stats_filtered_token_2 = gr.TextArea(
|
170 |
-
label="filtered tokens",
|
171 |
-
lines=1,
|
172 |
-
elem_classes="statistics",
|
173 |
-
visible=False
|
174 |
-
)
|
175 |
-
stats_overlap_token_size_2 = gr.TextArea(
|
176 |
-
label="Overlap Tokens",
|
177 |
-
lines=1,
|
178 |
-
elem_classes="statistics"
|
179 |
-
)
|
180 |
-
|
181 |
-
# TODO: 图 表 压缩率
|
182 |
-
with gr.Row():
|
183 |
-
# dynamic change label
|
184 |
-
with gr.Column():
|
185 |
-
output_text_1 = gr.Highlightedtext(
|
186 |
-
show_legend=True,
|
187 |
-
elem_classes="space-show"
|
188 |
-
)
|
189 |
-
with gr.Column():
|
190 |
-
output_text_2 = gr.Highlightedtext(
|
191 |
-
show_legend=True,
|
192 |
-
elem_classes="space-show"
|
193 |
-
)
|
194 |
-
|
195 |
-
with gr.Row():
|
196 |
-
output_table_1 = gr.Dataframe()
|
197 |
-
output_table_2 = gr.Dataframe()
|
198 |
-
|
199 |
-
# setting
|
200 |
-
# compress_rate_unit.change(compress_rate_unit_change, [compress_rate_unit],
|
201 |
-
# [stats_compress_rate_1, stats_compress_rate_2])
|
202 |
-
|
203 |
-
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1],
|
204 |
-
[output_text_1, output_table_1])
|
205 |
-
tokenizer_type_1.change(basic_count, [tokenizer_type_1], [stats_vocab_size_1, stats_zh_token_size_1])
|
206 |
-
tokenizer_type_1.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
207 |
-
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
208 |
-
tokenizer_type_1.change(get_compress_rate, [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
209 |
-
[stats_compress_rate_1])
|
210 |
-
|
211 |
-
# TODO: every=3
|
212 |
-
user_input.change(tokenize_pair,
|
213 |
-
[user_input, tokenizer_type_1, tokenizer_type_2],
|
214 |
-
[output_text_1, output_table_1, output_text_2, output_table_2]) # , pass_request=1
|
215 |
-
|
216 |
-
tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2],
|
217 |
-
[output_text_2, output_table_2])
|
218 |
-
tokenizer_type_2.change(basic_count, [tokenizer_type_2], [stats_vocab_size_2, stats_zh_token_size_2])
|
219 |
-
tokenizer_type_2.change(get_overlap_token_size, [tokenizer_type_1, tokenizer_type_2],
|
220 |
-
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
221 |
-
tokenizer_type_2.change(get_compress_rate,
|
222 |
-
[tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
223 |
-
[stats_compress_rate_2])
|
224 |
-
|
225 |
-
compress_rate_unit.change(get_compress_rate,
|
226 |
-
[tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
227 |
-
[stats_compress_rate_1])
|
228 |
-
compress_rate_unit.change(get_compress_rate,
|
229 |
-
[tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
230 |
-
[stats_compress_rate_2])
|
231 |
-
compress_rate_corpus.change(get_compress_rate,
|
232 |
-
[tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
233 |
-
[stats_compress_rate_1])
|
234 |
-
compress_rate_corpus.change(get_compress_rate,
|
235 |
-
[tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
236 |
-
[stats_compress_rate_2])
|
237 |
|
238 |
-
dropdown_examples.change(
|
239 |
-
example_fn,
|
240 |
-
dropdown_examples,
|
241 |
-
[user_input, tokenizer_type_1, tokenizer_type_2]
|
242 |
-
)
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
)
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
-
|
254 |
-
demo.launch()
|
255 |
-
# demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
+
from app_playground import demo as tab_playground
|
4 |
+
from app_compression import demo as tab_compression
|
5 |
+
from patcher.gr_interface import TabbedInterface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
demo = TabbedInterface(
|
9 |
+
[tab_playground, tab_compression],
|
10 |
+
[" ⚔️Playground", "🏆 Compression Leaderboard",], # 编码速度,解码速度,字符分类(zh、num等,支持正则),支持的语言,机构,。
|
11 |
+
title='<div align="center">Tokenizer Arena ⚔️</div>',
|
12 |
+
css="css/style.css"
|
13 |
+
)
|
|
|
14 |
|
15 |
if __name__ == "__main__":
|
16 |
+
demo.launch()
|
|
|
|
app_compression.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils.compression_util import get_compression_leaderboard
|
3 |
+
from utils.compression_util import common_corpuses
|
4 |
+
|
5 |
+
with gr.Blocks() as demo:
|
6 |
+
# gr.Markdown("## Convertor")
|
7 |
+
# with gr.Accordion("Convertor", open=False):
|
8 |
+
# gr.Markdown("Tokenize {} corpus")
|
9 |
+
# with gr.Row(elem_classes="no-border"):
|
10 |
+
# gr.Button("File Size", min_width=50)
|
11 |
+
# file_size = gr.Textbox(
|
12 |
+
# show_label=False,
|
13 |
+
# min_width=50,
|
14 |
+
# # elem_classes="textbox-as-text"
|
15 |
+
# )
|
16 |
+
# gr.Dropdown(
|
17 |
+
# choices=['MB', 'GB', 'TB'],
|
18 |
+
# show_label=False,
|
19 |
+
# min_width=15,
|
20 |
+
# # elem_classes="textbox-as-text"
|
21 |
+
# )
|
22 |
+
# # gr.Markdown('<h2 align="center">≈</h2>')
|
23 |
+
# # gr.HTML('<h2 style="margin: auto;">≈</h2>')
|
24 |
+
# gr.Button(
|
25 |
+
# "≈",
|
26 |
+
# min_width=10,
|
27 |
+
# elem_classes="button-white h2-font"
|
28 |
+
#
|
29 |
+
# )
|
30 |
+
#
|
31 |
+
# gr.Button(
|
32 |
+
# "Tokens",
|
33 |
+
# min_width=50
|
34 |
+
# )
|
35 |
+
# gr.Textbox(
|
36 |
+
# show_label=False,
|
37 |
+
# min_width=50
|
38 |
+
# )
|
39 |
+
# gr.Dropdown(
|
40 |
+
# ['million', 'billion', 'trillion'],
|
41 |
+
# show_label=False,
|
42 |
+
# min_width=15,
|
43 |
+
# elem_classes="button-white"
|
44 |
+
# )
|
45 |
+
|
46 |
+
gr.Markdown("## 🛠️ Setting") # ⚙
|
47 |
+
with gr.Accordion("Please select corpus and measure of compression rate ...", open=True):
|
48 |
+
# file size 💽 🖴, tokens 🧮
|
49 |
+
# gr.Markdown(
|
50 |
+
# "Please select corpus and measure of compression rate.\n"
|
51 |
+
#"`num_of_trillion_tokens` `num_of_billion_tokens`\n"
|
52 |
+
# "- `b_tokens/g_bytes` measures how many billion tokens per gigabytes corpus. \n"
|
53 |
+
# "- `t_tokens/t_bytes` measures how many trillion tokens per terabytes corpus. \n"
|
54 |
+
# "- `n_chars/n_tokens` measures how many chars per token in the current corpus. \n\n"
|
55 |
+
# "All the above measures are depend on corpus. You can reproduce this "
|
56 |
+
# "procedure at [github](https://github.com/xu-song/tokenizer-arena/)."
|
57 |
+
# )
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
compress_rate_corpus = gr.Dropdown(
|
61 |
+
common_corpuses, # , "code"
|
62 |
+
value=["cc100-en", "cc100-zh-Hans"],
|
63 |
+
label="corpus",
|
64 |
+
multiselect=True
|
65 |
+
# info=""
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
# unit of file_size: gigabyte terabyte
|
70 |
+
# unit of token_num: million billion trillion
|
71 |
+
# The most common units of measurement include length (meter, inch, foot), weight (gram, kilogram, pound), volume (liter, gallon, milliliter), time (second, minute, hour)
|
72 |
+
compress_rate_unit = gr.Radio(
|
73 |
+
["b_tokens/g_bytes", "t_tokens/t_bytes"],
|
74 |
+
value="b_tokens/g_bytes",
|
75 |
+
label="measure",
|
76 |
+
)
|
77 |
+
|
78 |
+
gr.Markdown(
|
79 |
+
# "`num_of_trillion_tokens` `num_of_billion_tokens`\n"
|
80 |
+
"- `b_tokens/g_bytes` measures how many billion tokens per gigabytes corpus. \n"
|
81 |
+
"- `t_tokens/t_bytes` measures how many trillion tokens per terabytes corpus. \n"
|
82 |
+
"- `n_chars/n_tokens` measures how many chars per token in the tokenized corpus. \n\n"
|
83 |
+
"All the above measures are depend on corpus. You can reproduce this "
|
84 |
+
"procedure at [github](https://github.com/xu-song/tokenizer-arena/)."
|
85 |
+
)
|
86 |
+
|
87 |
+
gr.Markdown("## 🏆 Compression Rate Leaderboard")
|
88 |
+
search_bar = gr.Textbox(
|
89 |
+
placeholder="🔍 Search tokenizers(e.g., 'llama') and press ENTER...",
|
90 |
+
show_label=False,
|
91 |
+
elem_id="search-bar",
|
92 |
+
)
|
93 |
+
compress_rate_table = gr.Dataframe()
|
94 |
+
|
95 |
+
# func call
|
96 |
+
compress_rate_corpus.change(
|
97 |
+
get_compression_leaderboard,
|
98 |
+
inputs=[compress_rate_corpus, compress_rate_unit],
|
99 |
+
outputs=compress_rate_table
|
100 |
+
)
|
101 |
+
compress_rate_unit.change(
|
102 |
+
get_compression_leaderboard,
|
103 |
+
inputs=[compress_rate_corpus, compress_rate_unit],
|
104 |
+
outputs=compress_rate_table
|
105 |
+
)
|
106 |
+
# file_size.change(
|
107 |
+
# get_all_compress_rate,
|
108 |
+
# outputs=compress_rate_table
|
109 |
+
# )
|
110 |
+
|
111 |
+
search_bar.submit(
|
112 |
+
get_compression_leaderboard,
|
113 |
+
inputs=[
|
114 |
+
compress_rate_corpus,
|
115 |
+
compress_rate_unit,
|
116 |
+
search_bar,
|
117 |
+
],
|
118 |
+
outputs=compress_rate_table
|
119 |
+
)
|
120 |
+
|
121 |
+
demo.load(
|
122 |
+
get_compression_leaderboard,
|
123 |
+
inputs=[compress_rate_corpus, compress_rate_unit],
|
124 |
+
outputs=compress_rate_table
|
125 |
+
)
|
126 |
+
if __name__ == "__main__":
|
127 |
+
demo.launch()
|
app_playground.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# author: xusong
|
3 |
+
# time: 2022/8/23 16:06
|
4 |
+
|
5 |
+
"""
|
6 |
+
## TODO:
|
7 |
+
- i18 国际化 https://blog.csdn.net/qq_26212731/article/details/78457198 request.header中也有language
|
8 |
+
- iter_vocab 的 warmup
|
9 |
+
- 开关
|
10 |
+
- add_special_token 开关
|
11 |
+
- theme 开关 light/dark
|
12 |
+
- token_id/tokens/bytes 开关
|
13 |
+
- 中文字词统计,是否要包括 _ G 等字符
|
14 |
+
- 评测
|
15 |
+
- OOV评测
|
16 |
+
- 通过 javascript 添加 hover_text
|
17 |
+
- 英文 utf-8编码
|
18 |
+
- 词典支持下载,借用image下载的标签,
|
19 |
+
- baichuan的单字数量怎么两万多个?
|
20 |
+
- qwen: ValueError: Unclosed image token
|
21 |
+
- 路径修改为全path meta-llama/Llama-2-13b-hf
|
22 |
+
|
23 |
+
plots
|
24 |
+
|
25 |
+
table
|
26 |
+
|
27 |
+
## related demo
|
28 |
+
- [](http://text-processing.com/demo/tokenize/)
|
29 |
+
- [gpt-tokenizer](https://gpt-tokenizer.dev/)
|
30 |
+
- [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
|
31 |
+
- [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
|
32 |
+
|
33 |
+
## 可视化
|
34 |
+
|
35 |
+
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
|
36 |
+
"""
|
37 |
+
|
38 |
+
import gradio as gr
|
39 |
+
from vocab import all_tokenizers
|
40 |
+
from util import *
|
41 |
+
from examples import example_fn, example_types
|
42 |
+
|
43 |
+
get_window_url_params = """
|
44 |
+
function(url_params) {
|
45 |
+
const params = new URLSearchParams(window.location.search);
|
46 |
+
url_params = JSON.stringify(Object.fromEntries(params));
|
47 |
+
return url_params;
|
48 |
+
}
|
49 |
+
"""
|
50 |
+
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
# links: https://www.coderstool.com/utf8-encoding-decoding
|
53 |
+
# 功能:输入文本,进行分词
|
54 |
+
# 分词器:常见的分词器有集中,
|
55 |
+
# 背景:方便分词、看词粒度、对比
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
gr.Markdown("## Input Text")
|
59 |
+
dropdown_examples = gr.Dropdown(
|
60 |
+
example_types,
|
61 |
+
type="index",
|
62 |
+
show_label=False,
|
63 |
+
container=False,
|
64 |
+
scale=0,
|
65 |
+
elem_classes="example-style"
|
66 |
+
)
|
67 |
+
user_input = gr.Textbox(
|
68 |
+
# value=default_user_input,
|
69 |
+
label="Input Text",
|
70 |
+
lines=5,
|
71 |
+
show_label=False,
|
72 |
+
)
|
73 |
+
gr.Markdown("## Tokenization")
|
74 |
+
|
75 |
+
# compress rate setting TODO: 将 这个模块调整到下面
|
76 |
+
# with gr.Accordion("Compress Rate Setting", open=True):
|
77 |
+
# gr.Markdown(
|
78 |
+
# "Please select corpus and unit of compress rate, get more details at [github](https://github.com/xu-song/tokenizer-arena/). ")
|
79 |
+
# with gr.Row():
|
80 |
+
# compress_rate_corpus = gr.CheckboxGroup(
|
81 |
+
# common_corpuses, # , "code"
|
82 |
+
# value=["cc100-en", "cc100-zh-Hans"],
|
83 |
+
# label="corpus",
|
84 |
+
# # info=""
|
85 |
+
# )
|
86 |
+
# compress_rate_unit = gr.Radio(
|
87 |
+
# common_units,
|
88 |
+
# value="b_tokens/g_bytes",
|
89 |
+
# label="unit",
|
90 |
+
# )
|
91 |
+
# TODO: Token Setting
|
92 |
+
# with gr.Accordion("Token Filter Setting", open=False):
|
93 |
+
# gr.Markdown(
|
94 |
+
# "Get total number of tokens which contain the following character)")
|
95 |
+
# gr.Radio(
|
96 |
+
# ["zh-Hans", "", "number", "space"],
|
97 |
+
# value="zh",
|
98 |
+
# )
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column(scale=6):
|
102 |
+
with gr.Group():
|
103 |
+
tokenizer_name_1 = gr.Dropdown(
|
104 |
+
all_tokenizers,
|
105 |
+
label="Tokenizer 1",
|
106 |
+
)
|
107 |
+
with gr.Group():
|
108 |
+
with gr.Row():
|
109 |
+
stats_vocab_size_1 = gr.TextArea(
|
110 |
+
label="Vocab Size",
|
111 |
+
lines=1,
|
112 |
+
elem_classes="statistics"
|
113 |
+
)
|
114 |
+
stats_zh_token_size_1 = gr.TextArea(
|
115 |
+
label="ZH char/word",
|
116 |
+
lines=1,
|
117 |
+
elem_classes="statistics",
|
118 |
+
)
|
119 |
+
# stats_compress_rate_1 = gr.TextArea(
|
120 |
+
# label="Compress Rate",
|
121 |
+
# lines=1,
|
122 |
+
# elem_classes="statistics",
|
123 |
+
# )
|
124 |
+
stats_overlap_token_size_1 = gr.TextArea(
|
125 |
+
# value=default_stats_overlap_token_size,
|
126 |
+
label="Overlap Tokens",
|
127 |
+
lines=1,
|
128 |
+
elem_classes="statistics"
|
129 |
+
)
|
130 |
+
# stats_3 = gr.TextArea(
|
131 |
+
# label="Compress Rate",
|
132 |
+
# lines=1,
|
133 |
+
# elem_classes="statistics"
|
134 |
+
# )
|
135 |
+
# https://www.onlinewebfonts.com/icon/418591
|
136 |
+
gr.Image("images/VS.svg", scale=1, show_label=False,
|
137 |
+
show_download_button=False, container=False,
|
138 |
+
show_share_button=False)
|
139 |
+
with gr.Column(scale=6):
|
140 |
+
with gr.Group():
|
141 |
+
tokenizer_name_2 = gr.Dropdown(
|
142 |
+
all_tokenizers,
|
143 |
+
label="Tokenizer 2",
|
144 |
+
)
|
145 |
+
with gr.Group():
|
146 |
+
with gr.Row():
|
147 |
+
stats_vocab_size_2 = gr.TextArea(
|
148 |
+
label="VocabSize",
|
149 |
+
lines=1,
|
150 |
+
elem_classes="statistics"
|
151 |
+
)
|
152 |
+
stats_zh_token_size_2 = gr.TextArea(
|
153 |
+
label="ZH char/word", # 中文字/词
|
154 |
+
lines=1,
|
155 |
+
elem_classes="statistics",
|
156 |
+
)
|
157 |
+
# stats_compress_rate_2 = gr.TextArea(
|
158 |
+
# label="Compress Rate",
|
159 |
+
# lines=1,
|
160 |
+
# elem_classes="statistics"
|
161 |
+
# )
|
162 |
+
stats_filtered_token_2 = gr.TextArea(
|
163 |
+
label="filtered tokens",
|
164 |
+
lines=1,
|
165 |
+
elem_classes="statistics",
|
166 |
+
visible=False
|
167 |
+
)
|
168 |
+
stats_overlap_token_size_2 = gr.TextArea(
|
169 |
+
label="Overlap Tokens",
|
170 |
+
lines=1,
|
171 |
+
elem_classes="statistics"
|
172 |
+
)
|
173 |
+
|
174 |
+
# TODO: 图 表 压缩率
|
175 |
+
with gr.Row():
|
176 |
+
# dynamic change label
|
177 |
+
with gr.Column():
|
178 |
+
output_text_1 = gr.Highlightedtext(
|
179 |
+
show_legend=True,
|
180 |
+
elem_classes="space-show"
|
181 |
+
)
|
182 |
+
with gr.Column():
|
183 |
+
output_text_2 = gr.Highlightedtext(
|
184 |
+
show_legend=True,
|
185 |
+
elem_classes="space-show"
|
186 |
+
)
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
output_table_1 = gr.Dataframe()
|
190 |
+
output_table_2 = gr.Dataframe()
|
191 |
+
|
192 |
+
# setting
|
193 |
+
# compress_rate_unit.change(compress_rate_unit_change, [compress_rate_unit],
|
194 |
+
# [stats_compress_rate_1, stats_compress_rate_2])
|
195 |
+
|
196 |
+
tokenizer_name_1.change(tokenize, [user_input, tokenizer_name_1],
|
197 |
+
[output_text_1, output_table_1])
|
198 |
+
tokenizer_name_1.change(basic_count, [tokenizer_name_1], [stats_vocab_size_1, stats_zh_token_size_1])
|
199 |
+
tokenizer_name_1.change(get_overlap_token_size, [tokenizer_name_1, tokenizer_name_2],
|
200 |
+
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
201 |
+
# tokenizer_type_1.change(get_compress_rate, [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
202 |
+
# [stats_compress_rate_1])
|
203 |
+
|
204 |
+
# TODO: every=3
|
205 |
+
user_input.change(tokenize_pair,
|
206 |
+
[user_input, tokenizer_name_1, tokenizer_name_2],
|
207 |
+
[output_text_1, output_table_1, output_text_2, output_table_2]) # , pass_request=1
|
208 |
+
|
209 |
+
tokenizer_name_2.change(tokenize, [user_input, tokenizer_name_2],
|
210 |
+
[output_text_2, output_table_2])
|
211 |
+
tokenizer_name_2.change(basic_count, [tokenizer_name_2], [stats_vocab_size_2, stats_zh_token_size_2])
|
212 |
+
tokenizer_name_2.change(get_overlap_token_size, [tokenizer_name_1, tokenizer_name_2],
|
213 |
+
[stats_overlap_token_size_1, stats_overlap_token_size_2])
|
214 |
+
# tokenizer_type_2.change(get_compress_rate,
|
215 |
+
# [tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
216 |
+
# [stats_compress_rate_2])
|
217 |
+
#
|
218 |
+
# compress_rate_unit.change(get_compress_rate,
|
219 |
+
# [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
220 |
+
# [stats_compress_rate_1])
|
221 |
+
# compress_rate_unit.change(get_compress_rate,
|
222 |
+
# [tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
223 |
+
# [stats_compress_rate_2])
|
224 |
+
# compress_rate_corpus.change(get_compress_rate,
|
225 |
+
# [tokenizer_type_1, compress_rate_corpus, compress_rate_unit],
|
226 |
+
# [stats_compress_rate_1])
|
227 |
+
# compress_rate_corpus.change(get_compress_rate,
|
228 |
+
# [tokenizer_type_2, compress_rate_corpus, compress_rate_unit],
|
229 |
+
# [stats_compress_rate_2])
|
230 |
+
|
231 |
+
dropdown_examples.change(
|
232 |
+
example_fn,
|
233 |
+
dropdown_examples,
|
234 |
+
[user_input, tokenizer_name_1, tokenizer_name_2]
|
235 |
+
)
|
236 |
+
|
237 |
+
demo.load(js=open("js/onload.js", "r", encoding="utf-8").read())
|
238 |
+
demo.load(
|
239 |
+
fn=on_load,
|
240 |
+
inputs=[user_input], # 这里只需要传个空object即可。
|
241 |
+
outputs=[user_input, tokenizer_name_1, tokenizer_name_2],
|
242 |
+
js=get_window_url_params
|
243 |
+
)
|
244 |
+
|
245 |
+
if __name__ == "__main__":
|
246 |
+
# demo.queue(max_size=20).launch()
|
247 |
+
demo.launch()
|
248 |
+
# demo.launch(share=True)
|
css/style.css
CHANGED
@@ -8,6 +8,28 @@
|
|
8 |
white-space: pre-wrap;
|
9 |
}
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
/* 隐藏legend */
|
12 |
.category-legend {
|
13 |
display: none !important;
|
@@ -33,4 +55,5 @@
|
|
33 |
.example-style {
|
34 |
max-width: 150px;
|
35 |
align-self: self-end;
|
36 |
-
}
|
|
|
|
8 |
white-space: pre-wrap;
|
9 |
}
|
10 |
|
11 |
+
|
12 |
+
/* white button */
|
13 |
+
.button-as-text {
|
14 |
+
background: #fff;
|
15 |
+
border-color: #fff;
|
16 |
+
}
|
17 |
+
|
18 |
+
.textbox-as-text {
|
19 |
+
border-style: hidden;
|
20 |
+
background: #fff;
|
21 |
+
border-color: #fff;
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
.h2-font {
|
26 |
+
font-size: 30px;
|
27 |
+
}
|
28 |
+
|
29 |
+
.no-border {
|
30 |
+
border: 0px none;
|
31 |
+
}
|
32 |
+
|
33 |
/* 隐藏legend */
|
34 |
.category-legend {
|
35 |
display: none !important;
|
|
|
55 |
.example-style {
|
56 |
max-width: 150px;
|
57 |
align-self: self-end;
|
58 |
+
}
|
59 |
+
|
examples.py
CHANGED
@@ -24,7 +24,7 @@ examples = {
|
|
24 |
# !?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.
|
25 |
["punctuation: ,.:/?+=\",。!?;【】〔〕〖〗", "gemma_7b", "llama"], # llama词典有点小
|
26 |
["symbol: 🦙❤❥웃유♋☮✊☏☢☚✔☑♚▢♪✈✞÷↑↓▤▥⊙■□▣▽¿─│♥❣▬▫☿Ⓐ ✋✉☣☤", "baichuan", "llama"],
|
27 |
-
# ["special: [PAD] [UNK] [CLS] [SEP] [MASK] <|endoftext|>", "", ""],
|
28 |
],
|
29 |
"zh": [
|
30 |
["空格测试: 2个空格 8个空格", "llama", "chatglm2_6b"], # chatglm 有blank_n,
|
|
|
24 |
# !?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏.
|
25 |
["punctuation: ,.:/?+=\",。!?;【】〔〕〖〗", "gemma_7b", "llama"], # llama词典有点小
|
26 |
["symbol: 🦙❤❥웃유♋☮✊☏☢☚✔☑♚▢♪✈✞÷↑↓▤▥⊙■□▣▽¿─│♥❣▬▫☿Ⓐ ✋✉☣☤", "baichuan", "llama"],
|
27 |
+
# ["special: [PAD] [UNK] [CLS] [SEP] [MASK] <|system|> <|user|> <|assistant|> <|endoftext|>", "", ""],
|
28 |
],
|
29 |
"zh": [
|
30 |
["空格测试: 2个空格 8个空格", "llama", "chatglm2_6b"], # chatglm 有blank_n,
|
patcher/gr_interface.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
原生 TabbedInterface 的 title采用markdown,不能实现居中,因此这里做了调整。
|
3 |
+
"""
|
4 |
+
|
5 |
+
from gradio import Blocks, Interface, Theme, Tabs, Tab, HTML
|
6 |
+
|
7 |
+
class TabbedInterface(Blocks):
|
8 |
+
"""
|
9 |
+
A TabbedInterface is created by providing a list of Interfaces or Blocks, each of which gets
|
10 |
+
rendered in a separate tab. Only the components from the Interface/Blocks will be rendered in the tab.
|
11 |
+
Certain high-level attributes of the Blocks (e.g. custom `css`, `js`, and `head` attributes) will not be loaded.
|
12 |
+
|
13 |
+
Demos: tabbed_interface_lite
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
interface_list: list[Interface],
|
19 |
+
tab_names: list[str] | None = None,
|
20 |
+
title: str | None = None,
|
21 |
+
theme: Theme | str | None = None,
|
22 |
+
analytics_enabled: bool | None = None,
|
23 |
+
css: str | None = None,
|
24 |
+
js: str | None = None,
|
25 |
+
head: str | None = None,
|
26 |
+
):
|
27 |
+
"""
|
28 |
+
Parameters:
|
29 |
+
interface_list: A list of Interfaces (or Blocks) to be rendered in the tabs.
|
30 |
+
tab_names: A list of tab names. If None, the tab names will be "Tab 1", "Tab 2", etc.
|
31 |
+
title: The tab title to display when this demo is opened in a browser window.
|
32 |
+
theme: A Theme object or a string representing a theme. If a string, will look for a built-in theme with that name (e.g. "soft" or "default"), or will attempt to load a theme from the Hugging Face Hub (e.g. "gradio/monochrome"). If None, will use the Default theme.
|
33 |
+
analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable or default to True.
|
34 |
+
css: Custom css as a string or path to a css file. This css will be included in the demo webpage.
|
35 |
+
js: Custom js or path to js file to run when demo is first loaded. This javascript will be included in the demo webpage.
|
36 |
+
head: Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, scripts, stylesheets, etc. to the page.
|
37 |
+
Returns:
|
38 |
+
a Gradio Tabbed Interface for the given interfaces
|
39 |
+
"""
|
40 |
+
super().__init__(
|
41 |
+
title=title or "Gradio",
|
42 |
+
theme=theme,
|
43 |
+
analytics_enabled=analytics_enabled,
|
44 |
+
mode="tabbed_interface",
|
45 |
+
css=css,
|
46 |
+
js=js,
|
47 |
+
head=head,
|
48 |
+
)
|
49 |
+
if tab_names is None:
|
50 |
+
tab_names = [f"Tab {i}" for i in range(len(interface_list))]
|
51 |
+
with self:
|
52 |
+
if title:
|
53 |
+
HTML(
|
54 |
+
f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>"
|
55 |
+
)
|
56 |
+
with Tabs():
|
57 |
+
for interface, tab_name in zip(interface_list, tab_names):
|
58 |
+
with Tab(label=tab_name):
|
59 |
+
interface.render()
|
tokenizer/sptokenizer_patch.py → patcher/sptokenizer_patch_deprecated.py
RENAMED
@@ -1,6 +1,8 @@
|
|
1 |
"""
|
2 |
|
|
|
3 |
|
|
|
4 |
|
5 |
## usage
|
6 |
|
@@ -8,11 +10,15 @@
|
|
8 |
|
9 |
## 风险评估
|
10 |
|
11 |
-
-
|
12 |
|
|
|
|
|
|
|
|
|
13 |
"""
|
14 |
-
import sentencepiece
|
15 |
|
|
|
16 |
|
17 |
|
18 |
@property
|
@@ -32,15 +38,18 @@ def _tokenize(self, text):
|
|
32 |
"""Returns a tokenized string."""
|
33 |
return self.encode(text, out_type=str)
|
34 |
|
|
|
35 |
def _convert_token_to_id(self, token):
|
36 |
"""Converts a token (str) in an id using the vocab."""
|
37 |
return self.piece_to_id(token)
|
38 |
|
|
|
39 |
def _convert_id_to_token(self, index):
|
40 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
41 |
token = self.IdToPiece(index)
|
42 |
return token
|
43 |
|
|
|
44 |
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
45 |
""" copy from transformers.PreTrainedTokenizer
|
46 |
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
@@ -87,11 +96,10 @@ def decode(self, *args, **kwargs):
|
|
87 |
return self.Decode(*args, **kwargs)
|
88 |
|
89 |
|
90 |
-
sentencepiece.SentencePieceProcessor.vocab_size = vocab_size
|
91 |
sentencepiece.SentencePieceProcessor.get_vocab = get_vocab
|
92 |
sentencepiece.SentencePieceProcessor._convert_id_to_token = _convert_id_to_token
|
93 |
sentencepiece.SentencePieceProcessor.convert_ids_to_tokens = convert_ids_to_tokens
|
94 |
# sentencepiece.SentencePieceProcessor.tokenize = _tokenize
|
95 |
sentencepiece.SentencePieceProcessor.encode = encode
|
96 |
sentencepiece.SentencePieceProcessor.decode = decode
|
97 |
-
|
|
|
1 |
"""
|
2 |
|
3 |
+
## adapt to transformer tokenizer
|
4 |
|
5 |
+
https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/tokenization_utils.py#L379
|
6 |
|
7 |
## usage
|
8 |
|
|
|
10 |
|
11 |
## 风险评估
|
12 |
|
13 |
+
- 可能会干扰 sentencepiece.SentencePieceProcessor的正常使用,比如 .vocab_size 原来是个方法,patch后是个property
|
14 |
|
15 |
+
|
16 |
+
## TODO
|
17 |
+
|
18 |
+
不用patch,改用wrapper。常见的 tokenizer通常是封装的 sentencepiece,
|
19 |
"""
|
|
|
20 |
|
21 |
+
import sentencepiece
|
22 |
|
23 |
|
24 |
@property
|
|
|
38 |
"""Returns a tokenized string."""
|
39 |
return self.encode(text, out_type=str)
|
40 |
|
41 |
+
|
42 |
def _convert_token_to_id(self, token):
|
43 |
"""Converts a token (str) in an id using the vocab."""
|
44 |
return self.piece_to_id(token)
|
45 |
|
46 |
+
|
47 |
def _convert_id_to_token(self, index):
|
48 |
"""Converts an index (integer) in a token (str) using the vocab."""
|
49 |
token = self.IdToPiece(index)
|
50 |
return token
|
51 |
|
52 |
+
|
53 |
def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
|
54 |
""" copy from transformers.PreTrainedTokenizer
|
55 |
Converts a single index or a sequence of indices in a token or a sequence of tokens, using the vocabulary and
|
|
|
96 |
return self.Decode(*args, **kwargs)
|
97 |
|
98 |
|
99 |
+
sentencepiece.SentencePieceProcessor.vocab_size = vocab_size #
|
100 |
sentencepiece.SentencePieceProcessor.get_vocab = get_vocab
|
101 |
sentencepiece.SentencePieceProcessor._convert_id_to_token = _convert_id_to_token
|
102 |
sentencepiece.SentencePieceProcessor.convert_ids_to_tokens = convert_ids_to_tokens
|
103 |
# sentencepiece.SentencePieceProcessor.tokenize = _tokenize
|
104 |
sentencepiece.SentencePieceProcessor.encode = encode
|
105 |
sentencepiece.SentencePieceProcessor.decode = decode
|
|
patcher/sptokenizer_wrapper.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" 封装 sentencepiece.SentencePieceProcessor,以便符合transformers中的tokenizer标准
|
2 |
+
|
3 |
+
## reference
|
4 |
+
|
5 |
+
|
6 |
+
## usage
|
7 |
+
|
8 |
+
- grok
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
import sentencepiece as spm
|
13 |
+
from transformers import PreTrainedTokenizer
|
14 |
+
|
15 |
+
|
16 |
+
class SPTokenizerWrapper(PreTrainedTokenizer):
|
17 |
+
"""
|
18 |
+
|
19 |
+
## impl in PreTrainedTokenizer
|
20 |
+
- convert_ids_to_tokens
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, vocab_file):
|
24 |
+
self.vocab_file = vocab_file
|
25 |
+
self.sp_model = spm.SentencePieceProcessor(self.vocab_file)
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
@property
|
29 |
+
def vocab_size(self):
|
30 |
+
"""Returns vocab size"""
|
31 |
+
return self.sp_model.get_piece_size()
|
32 |
+
|
33 |
+
def get_vocab(self):
|
34 |
+
"""Returns vocab as a dict"""
|
35 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
36 |
+
return vocab
|
37 |
+
|
38 |
+
def _convert_token_to_id(self, token):
|
39 |
+
"""Converts a token (str) in an id using the vocab."""
|
40 |
+
return self.sp_model.piece_to_id(token)
|
41 |
+
|
42 |
+
def _convert_id_to_token(self, index):
|
43 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
44 |
+
token = self.sp_model.IdToPiece(index)
|
45 |
+
return token
|
46 |
+
|
47 |
+
# def (self, ids, skip_special_tokens=False): # impl in PreTrainedTokenizer
|
48 |
+
|
49 |
+
|
50 |
+
def encode(self, *args, **kwargs):
|
51 |
+
kwargs.pop("add_special_tokens", None)
|
52 |
+
kwargs.pop("allowed_special", None)
|
53 |
+
return self.sp_model.Encode(*args, **kwargs)
|
54 |
+
|
55 |
+
def decode(self, *args, **kwargs):
|
56 |
+
kwargs.pop("skip_special_tokens", None)
|
57 |
+
return self.sp_model.Decode(*args, **kwargs)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
# PreTrainedTokenizer.convert_ids_to_tokens
|
{tokenizer → patcher}/tiktoken_patch.py
RENAMED
@@ -83,6 +83,10 @@ def encode(self, *args, **kwargs):
|
|
83 |
return self._encode(*args, **kwargs)
|
84 |
|
85 |
|
|
|
|
|
|
|
|
|
86 |
# tiktoken patch
|
87 |
Encoding._encode = Encoding.encode
|
88 |
Encoding.encode = encode
|
@@ -90,3 +94,4 @@ Encoding.decode = decode
|
|
90 |
Encoding.convert_ids_to_tokens = convert_ids_to_tokens
|
91 |
Encoding.get_vocab = get_vocab
|
92 |
Encoding.vocab_size = vocab_size
|
|
|
|
83 |
return self._encode(*args, **kwargs)
|
84 |
|
85 |
|
86 |
+
def __len__(self):
|
87 |
+
return self.n_vocab
|
88 |
+
|
89 |
+
|
90 |
# tiktoken patch
|
91 |
Encoding._encode = Encoding.encode
|
92 |
Encoding.encode = encode
|
|
|
94 |
Encoding.convert_ids_to_tokens = convert_ids_to_tokens
|
95 |
Encoding.get_vocab = get_vocab
|
96 |
Encoding.vocab_size = vocab_size
|
97 |
+
Encoding.__len__ = __len__
|
stats/compress_rate.json
ADDED
@@ -0,0 +1,1868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"amber.cc100-en": {
|
3 |
+
"vocab_size": 32000,
|
4 |
+
"n_bytes": 1124813,
|
5 |
+
"n_tokens": 294627,
|
6 |
+
"n_chars": 1121360
|
7 |
+
},
|
8 |
+
"aya_101.cc100-en": {
|
9 |
+
"vocab_size": 250100,
|
10 |
+
"n_bytes": 1124813,
|
11 |
+
"n_tokens": 317881,
|
12 |
+
"n_chars": 1121360
|
13 |
+
},
|
14 |
+
"baichuan.cc100-en": {
|
15 |
+
"vocab_size": 64000,
|
16 |
+
"n_bytes": 1124813,
|
17 |
+
"n_tokens": 280108,
|
18 |
+
"n_chars": 1121360
|
19 |
+
},
|
20 |
+
"baichuan2.cc100-en": {
|
21 |
+
"vocab_size": 125696,
|
22 |
+
"n_bytes": 1124813,
|
23 |
+
"n_tokens": 269011,
|
24 |
+
"n_chars": 1121360
|
25 |
+
},
|
26 |
+
"bert_base_cased.cc100-en": {
|
27 |
+
"vocab_size": 28996,
|
28 |
+
"n_bytes": 1124813,
|
29 |
+
"n_tokens": 288022,
|
30 |
+
"n_chars": 1121360
|
31 |
+
},
|
32 |
+
"bert_base_chinese.cc100-en": {
|
33 |
+
"vocab_size": 21128,
|
34 |
+
"n_bytes": 1124813,
|
35 |
+
"n_tokens": 377068,
|
36 |
+
"n_chars": 1121360
|
37 |
+
},
|
38 |
+
"bert_base_uncased.cc100-en": {
|
39 |
+
"vocab_size": 30522,
|
40 |
+
"n_bytes": 1124813,
|
41 |
+
"n_tokens": 280575,
|
42 |
+
"n_chars": 1121360
|
43 |
+
},
|
44 |
+
"bloom.cc100-en": {
|
45 |
+
"vocab_size": 250680,
|
46 |
+
"n_bytes": 1124813,
|
47 |
+
"n_tokens": 257405,
|
48 |
+
"n_chars": 1121360
|
49 |
+
},
|
50 |
+
"byt5_small.cc100-en": {
|
51 |
+
"vocab_size": 384,
|
52 |
+
"n_bytes": 1124813,
|
53 |
+
"n_tokens": 1134813,
|
54 |
+
"n_chars": 1121360
|
55 |
+
},
|
56 |
+
"character_glm_6b.cc100-en": {
|
57 |
+
"vocab_size": 64789,
|
58 |
+
"n_bytes": 1124813,
|
59 |
+
"n_tokens": 289347,
|
60 |
+
"n_chars": 1121360
|
61 |
+
},
|
62 |
+
"chatglm2_6b.cc100-en": {
|
63 |
+
"vocab_size": 64787,
|
64 |
+
"n_bytes": 1124813,
|
65 |
+
"n_tokens": 289329,
|
66 |
+
"n_chars": 1121360
|
67 |
+
},
|
68 |
+
"chatglm3_6b.cc100-en": {
|
69 |
+
"vocab_size": 64796,
|
70 |
+
"n_bytes": 1124813,
|
71 |
+
"n_tokens": 289347,
|
72 |
+
"n_chars": 1121360
|
73 |
+
},
|
74 |
+
"chatglm_6b.cc100-en": {
|
75 |
+
"vocab_size": 150344,
|
76 |
+
"n_bytes": 1124813,
|
77 |
+
"n_tokens": 284761,
|
78 |
+
"n_chars": 1121360
|
79 |
+
},
|
80 |
+
"chatyuan_large_v2.cc100-en": {
|
81 |
+
"vocab_size": 32128,
|
82 |
+
"n_bytes": 1124813,
|
83 |
+
"n_tokens": 536033,
|
84 |
+
"n_chars": 1121360
|
85 |
+
},
|
86 |
+
"chinese_llama.cc100-en": {
|
87 |
+
"vocab_size": 49953,
|
88 |
+
"n_bytes": 1124813,
|
89 |
+
"n_tokens": 291514,
|
90 |
+
"n_chars": 1121360
|
91 |
+
},
|
92 |
+
"chinese_llama2.cc100-en": {
|
93 |
+
"vocab_size": 55296,
|
94 |
+
"n_bytes": 1124813,
|
95 |
+
"n_tokens": 294627,
|
96 |
+
"n_chars": 1121360
|
97 |
+
},
|
98 |
+
"code_davinci_002.cc100-en": {
|
99 |
+
"vocab_size": 50281,
|
100 |
+
"n_bytes": 1124813,
|
101 |
+
"n_tokens": 258403,
|
102 |
+
"n_chars": 1121360
|
103 |
+
},
|
104 |
+
"crystal_coder.cc100-en": {
|
105 |
+
"vocab_size": 32022,
|
106 |
+
"n_bytes": 1124813,
|
107 |
+
"n_tokens": 284627,
|
108 |
+
"n_chars": 1121360
|
109 |
+
},
|
110 |
+
"dbrx_instruct.cc100-en": {
|
111 |
+
"vocab_size": 100280,
|
112 |
+
"n_bytes": 1124813,
|
113 |
+
"n_tokens": 254985,
|
114 |
+
"n_chars": 1121360
|
115 |
+
},
|
116 |
+
"deepseek_coder_33b_instruct.cc100-en": {
|
117 |
+
"vocab_size": 32022,
|
118 |
+
"n_bytes": 1124813,
|
119 |
+
"n_tokens": 287408,
|
120 |
+
"n_chars": 1121360
|
121 |
+
},
|
122 |
+
"deepseek_llm_7b_base.cc100-en": {
|
123 |
+
"vocab_size": 100015,
|
124 |
+
"n_bytes": 1124813,
|
125 |
+
"n_tokens": 272324,
|
126 |
+
"n_chars": 1121360
|
127 |
+
},
|
128 |
+
"falcon_180b.cc100-en": {
|
129 |
+
"vocab_size": 65024,
|
130 |
+
"n_bytes": 1124813,
|
131 |
+
"n_tokens": 262509,
|
132 |
+
"n_chars": 1121360
|
133 |
+
},
|
134 |
+
"falcon_7b.cc100-en": {
|
135 |
+
"vocab_size": 65024,
|
136 |
+
"n_bytes": 1124813,
|
137 |
+
"n_tokens": 262509,
|
138 |
+
"n_chars": 1121360
|
139 |
+
},
|
140 |
+
"fastchat_t5_3b.cc100-en": {
|
141 |
+
"vocab_size": 32110,
|
142 |
+
"n_bytes": 1124813,
|
143 |
+
"n_tokens": 484941,
|
144 |
+
"n_chars": 1121360
|
145 |
+
},
|
146 |
+
"flan_t5_base.cc100-en": {
|
147 |
+
"vocab_size": 32100,
|
148 |
+
"n_bytes": 1124813,
|
149 |
+
"n_tokens": 290104,
|
150 |
+
"n_chars": 1121360
|
151 |
+
},
|
152 |
+
"gemma_7b.cc100-en": {
|
153 |
+
"vocab_size": 256000,
|
154 |
+
"n_bytes": 1124813,
|
155 |
+
"n_tokens": 268010,
|
156 |
+
"n_chars": 1121360
|
157 |
+
},
|
158 |
+
"gpt2.cc100-en": {
|
159 |
+
"vocab_size": 50257,
|
160 |
+
"n_bytes": 1124813,
|
161 |
+
"n_tokens": 258428,
|
162 |
+
"n_chars": 1121360
|
163 |
+
},
|
164 |
+
"gpt2_chinese.cc100-en": {
|
165 |
+
"vocab_size": 21128,
|
166 |
+
"n_bytes": 1124813,
|
167 |
+
"n_tokens": 392641,
|
168 |
+
"n_chars": 1121360
|
169 |
+
},
|
170 |
+
"gpt_35_turbo.cc100-en": {
|
171 |
+
"vocab_size": 100277,
|
172 |
+
"n_bytes": 1124813,
|
173 |
+
"n_tokens": 254985,
|
174 |
+
"n_chars": 1121360
|
175 |
+
},
|
176 |
+
"gpt_4.cc100-en": {
|
177 |
+
"vocab_size": 100277,
|
178 |
+
"n_bytes": 1124813,
|
179 |
+
"n_tokens": 254985,
|
180 |
+
"n_chars": 1121360
|
181 |
+
},
|
182 |
+
"gpt_nexo_20b.cc100-en": {
|
183 |
+
"vocab_size": 50277,
|
184 |
+
"n_bytes": 1124813,
|
185 |
+
"n_tokens": 259357,
|
186 |
+
"n_chars": 1121360
|
187 |
+
},
|
188 |
+
"grok_1.cc100-en": {
|
189 |
+
"vocab_size": 131072,
|
190 |
+
"n_bytes": 1124813,
|
191 |
+
"n_tokens": 258048,
|
192 |
+
"n_chars": 1121360
|
193 |
+
},
|
194 |
+
"internlm2_chat_7b.cc100-en": {
|
195 |
+
"vocab_size": 92544,
|
196 |
+
"n_bytes": 1124813,
|
197 |
+
"n_tokens": 271583,
|
198 |
+
"n_chars": 1121360
|
199 |
+
},
|
200 |
+
"internlm2_math_7b.cc100-en": {
|
201 |
+
"vocab_size": 92544,
|
202 |
+
"n_bytes": 1124813,
|
203 |
+
"n_tokens": 271583,
|
204 |
+
"n_chars": 1121360
|
205 |
+
},
|
206 |
+
"internlm_chat_7b.cc100-en": {
|
207 |
+
"vocab_size": 103168,
|
208 |
+
"n_bytes": 1124813,
|
209 |
+
"n_tokens": 271293,
|
210 |
+
"n_chars": 1121360
|
211 |
+
},
|
212 |
+
"internlm_xcomposer_7b.cc100-en": {
|
213 |
+
"vocab_size": 103168,
|
214 |
+
"n_bytes": 1124813,
|
215 |
+
"n_tokens": 271293,
|
216 |
+
"n_chars": 1121360
|
217 |
+
},
|
218 |
+
"jamba_v0_1.cc100-en": {
|
219 |
+
"vocab_size": 65536,
|
220 |
+
"n_bytes": 1124813,
|
221 |
+
"n_tokens": 274242,
|
222 |
+
"n_chars": 1121360
|
223 |
+
},
|
224 |
+
"kplug.cc100-en": {
|
225 |
+
"vocab_size": 10261,
|
226 |
+
"n_bytes": 1124813,
|
227 |
+
"n_tokens": 393564,
|
228 |
+
"n_chars": 1121360
|
229 |
+
},
|
230 |
+
"llama.cc100-en": {
|
231 |
+
"vocab_size": 32000,
|
232 |
+
"n_bytes": 1124813,
|
233 |
+
"n_tokens": 294627,
|
234 |
+
"n_chars": 1121360
|
235 |
+
},
|
236 |
+
"llama2.cc100-en": {
|
237 |
+
"vocab_size": 32001,
|
238 |
+
"n_bytes": 1124813,
|
239 |
+
"n_tokens": 294627,
|
240 |
+
"n_chars": 1121360
|
241 |
+
},
|
242 |
+
"llama3.cc100-en": {
|
243 |
+
"vocab_size": 128256,
|
244 |
+
"n_bytes": 1124813,
|
245 |
+
"n_tokens": 254944,
|
246 |
+
"n_chars": 1121360
|
247 |
+
},
|
248 |
+
"mistral_7b.cc100-en": {
|
249 |
+
"vocab_size": 32000,
|
250 |
+
"n_bytes": 1124813,
|
251 |
+
"n_tokens": 285801,
|
252 |
+
"n_chars": 1121360
|
253 |
+
},
|
254 |
+
"mixtral_8_7b.cc100-en": {
|
255 |
+
"vocab_size": 32000,
|
256 |
+
"n_bytes": 1124813,
|
257 |
+
"n_tokens": 285801,
|
258 |
+
"n_chars": 1121360
|
259 |
+
},
|
260 |
+
"mobilebert_uncased.cc100-en": {
|
261 |
+
"vocab_size": 30522,
|
262 |
+
"n_bytes": 1124813,
|
263 |
+
"n_tokens": 280575,
|
264 |
+
"n_chars": 1121360
|
265 |
+
},
|
266 |
+
"moss.cc100-en": {
|
267 |
+
"vocab_size": 106072,
|
268 |
+
"n_bytes": 1124813,
|
269 |
+
"n_tokens": 257070,
|
270 |
+
"n_chars": 1121360
|
271 |
+
},
|
272 |
+
"mt5_large.cc100-en": {
|
273 |
+
"vocab_size": 250100,
|
274 |
+
"n_bytes": 1124813,
|
275 |
+
"n_tokens": 317881,
|
276 |
+
"n_chars": 1121360
|
277 |
+
},
|
278 |
+
"olmo_7b.cc100-en": {
|
279 |
+
"vocab_size": 50280,
|
280 |
+
"n_bytes": 1124813,
|
281 |
+
"n_tokens": 259357,
|
282 |
+
"n_chars": 1121360
|
283 |
+
},
|
284 |
+
"orion_14b_chat.cc100-en": {
|
285 |
+
"vocab_size": 84608,
|
286 |
+
"n_bytes": 1124813,
|
287 |
+
"n_tokens": 265948,
|
288 |
+
"n_chars": 1121360
|
289 |
+
},
|
290 |
+
"phi_1.cc100-en": {
|
291 |
+
"vocab_size": 50295,
|
292 |
+
"n_bytes": 1124813,
|
293 |
+
"n_tokens": 258409,
|
294 |
+
"n_chars": 1121360
|
295 |
+
},
|
296 |
+
"phi_2.cc100-en": {
|
297 |
+
"vocab_size": 50295,
|
298 |
+
"n_bytes": 1124813,
|
299 |
+
"n_tokens": 258409,
|
300 |
+
"n_chars": 1121360
|
301 |
+
},
|
302 |
+
"phi_3_mini.cc100-en": {
|
303 |
+
"vocab_size": 32011,
|
304 |
+
"n_bytes": 1124813,
|
305 |
+
"n_tokens": 294627,
|
306 |
+
"n_chars": 1121360
|
307 |
+
},
|
308 |
+
"pko_t5_large.cc100-en": {
|
309 |
+
"vocab_size": 50358,
|
310 |
+
"n_bytes": 1124813,
|
311 |
+
"n_tokens": 658985,
|
312 |
+
"n_chars": 1121360
|
313 |
+
},
|
314 |
+
"prompt_clue.cc100-en": {
|
315 |
+
"vocab_size": 32128,
|
316 |
+
"n_bytes": 1124813,
|
317 |
+
"n_tokens": 536033,
|
318 |
+
"n_chars": 1121360
|
319 |
+
},
|
320 |
+
"qwen1_5_14b_chat.cc100-en": {
|
321 |
+
"vocab_size": 151646,
|
322 |
+
"n_bytes": 1124813,
|
323 |
+
"n_tokens": 257983,
|
324 |
+
"n_chars": 1121360
|
325 |
+
},
|
326 |
+
"qwen_1_8b_chat.cc100-en": {
|
327 |
+
"vocab_size": 151851,
|
328 |
+
"n_bytes": 1124813,
|
329 |
+
"n_tokens": 257983,
|
330 |
+
"n_chars": 1121360
|
331 |
+
},
|
332 |
+
"qwen_72b_chat.cc100-en": {
|
333 |
+
"vocab_size": 151851,
|
334 |
+
"n_bytes": 1124813,
|
335 |
+
"n_tokens": 257983,
|
336 |
+
"n_chars": 1121360
|
337 |
+
},
|
338 |
+
"qwen_7b_chat.cc100-en": {
|
339 |
+
"vocab_size": 151851,
|
340 |
+
"n_bytes": 1124813,
|
341 |
+
"n_tokens": 257983,
|
342 |
+
"n_chars": 1121360
|
343 |
+
},
|
344 |
+
"roberta_chinese_clue.cc100-en": {
|
345 |
+
"vocab_size": 8021,
|
346 |
+
"n_bytes": 1124813,
|
347 |
+
"n_tokens": 583058,
|
348 |
+
"n_chars": 1121360
|
349 |
+
},
|
350 |
+
"skywork_13b_base.cc100-en": {
|
351 |
+
"vocab_size": 65519,
|
352 |
+
"n_bytes": 1124813,
|
353 |
+
"n_tokens": 294617,
|
354 |
+
"n_chars": 1121360
|
355 |
+
},
|
356 |
+
"skywork_13b_math.cc100-en": {
|
357 |
+
"vocab_size": 65519,
|
358 |
+
"n_bytes": 1124813,
|
359 |
+
"n_tokens": 294617,
|
360 |
+
"n_chars": 1121360
|
361 |
+
},
|
362 |
+
"solar_10_7b.cc100-en": {
|
363 |
+
"vocab_size": 32000,
|
364 |
+
"n_bytes": 1124813,
|
365 |
+
"n_tokens": 285801,
|
366 |
+
"n_chars": 1121360
|
367 |
+
},
|
368 |
+
"starchat_alpha.cc100-en": {
|
369 |
+
"vocab_size": 49156,
|
370 |
+
"n_bytes": 1124813,
|
371 |
+
"n_tokens": 288965,
|
372 |
+
"n_chars": 1121360
|
373 |
+
},
|
374 |
+
"switch_c_2048.cc100-en": {
|
375 |
+
"vocab_size": 32100,
|
376 |
+
"n_bytes": 1124813,
|
377 |
+
"n_tokens": 290104,
|
378 |
+
"n_chars": 1121360
|
379 |
+
},
|
380 |
+
"t5_base.cc100-en": {
|
381 |
+
"vocab_size": 32100,
|
382 |
+
"n_bytes": 1124813,
|
383 |
+
"n_tokens": 290104,
|
384 |
+
"n_chars": 1121360
|
385 |
+
},
|
386 |
+
"t5_large.cc100-en": {
|
387 |
+
"vocab_size": 32100,
|
388 |
+
"n_bytes": 1124813,
|
389 |
+
"n_tokens": 290104,
|
390 |
+
"n_chars": 1121360
|
391 |
+
},
|
392 |
+
"t5_small.cc100-en": {
|
393 |
+
"vocab_size": 32100,
|
394 |
+
"n_bytes": 1124813,
|
395 |
+
"n_tokens": 290104,
|
396 |
+
"n_chars": 1121360
|
397 |
+
},
|
398 |
+
"text_davinci_003.cc100-en": {
|
399 |
+
"vocab_size": 50281,
|
400 |
+
"n_bytes": 1124813,
|
401 |
+
"n_tokens": 258403,
|
402 |
+
"n_chars": 1121360
|
403 |
+
},
|
404 |
+
"tigerbot_13b_chat_v2.cc100-en": {
|
405 |
+
"vocab_size": 60515,
|
406 |
+
"n_bytes": 1124813,
|
407 |
+
"n_tokens": 285652,
|
408 |
+
"n_chars": 1121360
|
409 |
+
},
|
410 |
+
"tigerbot_70b_chat_v4_4k.cc100-en": {
|
411 |
+
"vocab_size": 65110,
|
412 |
+
"n_bytes": 1124813,
|
413 |
+
"n_tokens": 286946,
|
414 |
+
"n_chars": 1121360
|
415 |
+
},
|
416 |
+
"wizardcoder_15b_v1.cc100-en": {
|
417 |
+
"vocab_size": 49153,
|
418 |
+
"n_bytes": 1124813,
|
419 |
+
"n_tokens": 288965,
|
420 |
+
"n_chars": 1121360
|
421 |
+
},
|
422 |
+
"wizardcoder_python_7b_v1.cc100-en": {
|
423 |
+
"vocab_size": 32001,
|
424 |
+
"n_bytes": 1124813,
|
425 |
+
"n_tokens": 294627,
|
426 |
+
"n_chars": 1121360
|
427 |
+
},
|
428 |
+
"wizardlm_7b_v1.cc100-en": {
|
429 |
+
"vocab_size": 32001,
|
430 |
+
"n_bytes": 1124813,
|
431 |
+
"n_tokens": 294627,
|
432 |
+
"n_chars": 1121360
|
433 |
+
},
|
434 |
+
"wizardmath_70b_v1.cc100-en": {
|
435 |
+
"vocab_size": 32002,
|
436 |
+
"n_bytes": 1124813,
|
437 |
+
"n_tokens": 294627,
|
438 |
+
"n_chars": 1121360
|
439 |
+
},
|
440 |
+
"xlm_roberta.cc100-en": {
|
441 |
+
"vocab_size": 250002,
|
442 |
+
"n_bytes": 1124813,
|
443 |
+
"n_tokens": 300026,
|
444 |
+
"n_chars": 1121360
|
445 |
+
},
|
446 |
+
"yi_34b.cc100-en": {
|
447 |
+
"vocab_size": 64000,
|
448 |
+
"n_bytes": 1124813,
|
449 |
+
"n_tokens": 270400,
|
450 |
+
"n_chars": 1121360
|
451 |
+
},
|
452 |
+
"yi_6b.cc100-en": {
|
453 |
+
"vocab_size": 64000,
|
454 |
+
"n_bytes": 1124813,
|
455 |
+
"n_tokens": 270400,
|
456 |
+
"n_chars": 1121360
|
457 |
+
},
|
458 |
+
"yi_vl34b.cc100-en": {
|
459 |
+
"vocab_size": 64000,
|
460 |
+
"n_bytes": 1124813,
|
461 |
+
"n_tokens": 269738,
|
462 |
+
"n_chars": 1121360
|
463 |
+
},
|
464 |
+
"zephyr_7b_beta.cc100-en": {
|
465 |
+
"vocab_size": 32000,
|
466 |
+
"n_bytes": 1124813,
|
467 |
+
"n_tokens": 285801,
|
468 |
+
"n_chars": 1121360
|
469 |
+
},
|
470 |
+
"amber.cc100-zh-Hans": {
|
471 |
+
"vocab_size": 32000,
|
472 |
+
"n_bytes": 2633047,
|
473 |
+
"n_tokens": 1330093,
|
474 |
+
"n_chars": 927311
|
475 |
+
},
|
476 |
+
"aya_101.cc100-zh-Hans": {
|
477 |
+
"vocab_size": 250100,
|
478 |
+
"n_bytes": 2633047,
|
479 |
+
"n_tokens": 631182,
|
480 |
+
"n_chars": 927311
|
481 |
+
},
|
482 |
+
"baichuan.cc100-zh-Hans": {
|
483 |
+
"vocab_size": 64000,
|
484 |
+
"n_bytes": 2633047,
|
485 |
+
"n_tokens": 626117,
|
486 |
+
"n_chars": 927311
|
487 |
+
},
|
488 |
+
"baichuan2.cc100-zh-Hans": {
|
489 |
+
"vocab_size": 125696,
|
490 |
+
"n_bytes": 2633047,
|
491 |
+
"n_tokens": 541464,
|
492 |
+
"n_chars": 927311
|
493 |
+
},
|
494 |
+
"bert_base_cased.cc100-zh-Hans": {
|
495 |
+
"vocab_size": 28996,
|
496 |
+
"n_bytes": 2633047,
|
497 |
+
"n_tokens": 899709,
|
498 |
+
"n_chars": 927311
|
499 |
+
},
|
500 |
+
"bert_base_chinese.cc100-zh-Hans": {
|
501 |
+
"vocab_size": 21128,
|
502 |
+
"n_bytes": 2633047,
|
503 |
+
"n_tokens": 896599,
|
504 |
+
"n_chars": 927311
|
505 |
+
},
|
506 |
+
"bert_base_uncased.cc100-zh-Hans": {
|
507 |
+
"vocab_size": 30522,
|
508 |
+
"n_bytes": 2633047,
|
509 |
+
"n_tokens": 898554,
|
510 |
+
"n_chars": 927311
|
511 |
+
},
|
512 |
+
"bloom.cc100-zh-Hans": {
|
513 |
+
"vocab_size": 250680,
|
514 |
+
"n_bytes": 2633047,
|
515 |
+
"n_tokens": 573008,
|
516 |
+
"n_chars": 927311
|
517 |
+
},
|
518 |
+
"byt5_small.cc100-zh-Hans": {
|
519 |
+
"vocab_size": 384,
|
520 |
+
"n_bytes": 2633047,
|
521 |
+
"n_tokens": 2643047,
|
522 |
+
"n_chars": 927311
|
523 |
+
},
|
524 |
+
"character_glm_6b.cc100-zh-Hans": {
|
525 |
+
"vocab_size": 64789,
|
526 |
+
"n_bytes": 2633047,
|
527 |
+
"n_tokens": 583646,
|
528 |
+
"n_chars": 927311
|
529 |
+
},
|
530 |
+
"chatglm2_6b.cc100-zh-Hans": {
|
531 |
+
"vocab_size": 64787,
|
532 |
+
"n_bytes": 2633047,
|
533 |
+
"n_tokens": 583646,
|
534 |
+
"n_chars": 927311
|
535 |
+
},
|
536 |
+
"chatglm3_6b.cc100-zh-Hans": {
|
537 |
+
"vocab_size": 64796,
|
538 |
+
"n_bytes": 2633047,
|
539 |
+
"n_tokens": 583646,
|
540 |
+
"n_chars": 927311
|
541 |
+
},
|
542 |
+
"chatglm_6b.cc100-zh-Hans": {
|
543 |
+
"vocab_size": 150344,
|
544 |
+
"n_bytes": 2633047,
|
545 |
+
"n_tokens": 527384,
|
546 |
+
"n_chars": 927311
|
547 |
+
},
|
548 |
+
"chatyuan_large_v2.cc100-zh-Hans": {
|
549 |
+
"vocab_size": 32128,
|
550 |
+
"n_bytes": 2633047,
|
551 |
+
"n_tokens": 564905,
|
552 |
+
"n_chars": 927311
|
553 |
+
},
|
554 |
+
"chinese_llama.cc100-zh-Hans": {
|
555 |
+
"vocab_size": 49953,
|
556 |
+
"n_bytes": 2633047,
|
557 |
+
"n_tokens": 623219,
|
558 |
+
"n_chars": 927311
|
559 |
+
},
|
560 |
+
"chinese_llama2.cc100-zh-Hans": {
|
561 |
+
"vocab_size": 55296,
|
562 |
+
"n_bytes": 2633047,
|
563 |
+
"n_tokens": 625766,
|
564 |
+
"n_chars": 927311
|
565 |
+
},
|
566 |
+
"code_davinci_002.cc100-zh-Hans": {
|
567 |
+
"vocab_size": 50281,
|
568 |
+
"n_bytes": 2633047,
|
569 |
+
"n_tokens": 1876809,
|
570 |
+
"n_chars": 927311
|
571 |
+
},
|
572 |
+
"crystal_coder.cc100-zh-Hans": {
|
573 |
+
"vocab_size": 32022,
|
574 |
+
"n_bytes": 2633047,
|
575 |
+
"n_tokens": 1320093,
|
576 |
+
"n_chars": 927311
|
577 |
+
},
|
578 |
+
"dbrx_instruct.cc100-zh-Hans": {
|
579 |
+
"vocab_size": 100280,
|
580 |
+
"n_bytes": 2633047,
|
581 |
+
"n_tokens": 1084939,
|
582 |
+
"n_chars": 927311
|
583 |
+
},
|
584 |
+
"deepseek_coder_33b_instruct.cc100-zh-Hans": {
|
585 |
+
"vocab_size": 32022,
|
586 |
+
"n_bytes": 2633047,
|
587 |
+
"n_tokens": 720577,
|
588 |
+
"n_chars": 927311
|
589 |
+
},
|
590 |
+
"deepseek_llm_7b_base.cc100-zh-Hans": {
|
591 |
+
"vocab_size": 100015,
|
592 |
+
"n_bytes": 2633047,
|
593 |
+
"n_tokens": 605081,
|
594 |
+
"n_chars": 927311
|
595 |
+
},
|
596 |
+
"falcon_180b.cc100-zh-Hans": {
|
597 |
+
"vocab_size": 65024,
|
598 |
+
"n_bytes": 2633047,
|
599 |
+
"n_tokens": 1124681,
|
600 |
+
"n_chars": 927311
|
601 |
+
},
|
602 |
+
"falcon_7b.cc100-zh-Hans": {
|
603 |
+
"vocab_size": 65024,
|
604 |
+
"n_bytes": 2633047,
|
605 |
+
"n_tokens": 1124681,
|
606 |
+
"n_chars": 927311
|
607 |
+
},
|
608 |
+
"fastchat_t5_3b.cc100-zh-Hans": {
|
609 |
+
"vocab_size": 32110,
|
610 |
+
"n_bytes": 2633047,
|
611 |
+
"n_tokens": 178974,
|
612 |
+
"n_chars": 927311
|
613 |
+
},
|
614 |
+
"flan_t5_base.cc100-zh-Hans": {
|
615 |
+
"vocab_size": 32100,
|
616 |
+
"n_bytes": 2633047,
|
617 |
+
"n_tokens": 173520,
|
618 |
+
"n_chars": 927311
|
619 |
+
},
|
620 |
+
"gemma_7b.cc100-zh-Hans": {
|
621 |
+
"vocab_size": 256000,
|
622 |
+
"n_bytes": 2633047,
|
623 |
+
"n_tokens": 641795,
|
624 |
+
"n_chars": 927311
|
625 |
+
},
|
626 |
+
"gpt2.cc100-zh-Hans": {
|
627 |
+
"vocab_size": 50257,
|
628 |
+
"n_bytes": 2633047,
|
629 |
+
"n_tokens": 1876809,
|
630 |
+
"n_chars": 927311
|
631 |
+
},
|
632 |
+
"gpt2_chinese.cc100-zh-Hans": {
|
633 |
+
"vocab_size": 21128,
|
634 |
+
"n_bytes": 2633047,
|
635 |
+
"n_tokens": 899506,
|
636 |
+
"n_chars": 927311
|
637 |
+
},
|
638 |
+
"gpt_35_turbo.cc100-zh-Hans": {
|
639 |
+
"vocab_size": 100277,
|
640 |
+
"n_bytes": 2633047,
|
641 |
+
"n_tokens": 1084939,
|
642 |
+
"n_chars": 927311
|
643 |
+
},
|
644 |
+
"gpt_4.cc100-zh-Hans": {
|
645 |
+
"vocab_size": 100277,
|
646 |
+
"n_bytes": 2633047,
|
647 |
+
"n_tokens": 1084939,
|
648 |
+
"n_chars": 927311
|
649 |
+
},
|
650 |
+
"gpt_nexo_20b.cc100-zh-Hans": {
|
651 |
+
"vocab_size": 50277,
|
652 |
+
"n_bytes": 2633047,
|
653 |
+
"n_tokens": 1220529,
|
654 |
+
"n_chars": 927311
|
655 |
+
},
|
656 |
+
"grok_1.cc100-zh-Hans": {
|
657 |
+
"vocab_size": 131072,
|
658 |
+
"n_bytes": 2633047,
|
659 |
+
"n_tokens": 1414508,
|
660 |
+
"n_chars": 927311
|
661 |
+
},
|
662 |
+
"internlm2_chat_7b.cc100-zh-Hans": {
|
663 |
+
"vocab_size": 92544,
|
664 |
+
"n_bytes": 2633047,
|
665 |
+
"n_tokens": 579976,
|
666 |
+
"n_chars": 927311
|
667 |
+
},
|
668 |
+
"internlm2_math_7b.cc100-zh-Hans": {
|
669 |
+
"vocab_size": 92544,
|
670 |
+
"n_bytes": 2633047,
|
671 |
+
"n_tokens": 579976,
|
672 |
+
"n_chars": 927311
|
673 |
+
},
|
674 |
+
"internlm_chat_7b.cc100-zh-Hans": {
|
675 |
+
"vocab_size": 103168,
|
676 |
+
"n_bytes": 2633047,
|
677 |
+
"n_tokens": 579109,
|
678 |
+
"n_chars": 927311
|
679 |
+
},
|
680 |
+
"internlm_xcomposer_7b.cc100-zh-Hans": {
|
681 |
+
"vocab_size": 103168,
|
682 |
+
"n_bytes": 2633047,
|
683 |
+
"n_tokens": 579109,
|
684 |
+
"n_chars": 927311
|
685 |
+
},
|
686 |
+
"jamba_v0_1.cc100-zh-Hans": {
|
687 |
+
"vocab_size": 65536,
|
688 |
+
"n_bytes": 2633047,
|
689 |
+
"n_tokens": 1067054,
|
690 |
+
"n_chars": 927311
|
691 |
+
},
|
692 |
+
"kplug.cc100-zh-Hans": {
|
693 |
+
"vocab_size": 10261,
|
694 |
+
"n_bytes": 2633047,
|
695 |
+
"n_tokens": 902451,
|
696 |
+
"n_chars": 927311
|
697 |
+
},
|
698 |
+
"llama.cc100-zh-Hans": {
|
699 |
+
"vocab_size": 32000,
|
700 |
+
"n_bytes": 2633047,
|
701 |
+
"n_tokens": 1330093,
|
702 |
+
"n_chars": 927311
|
703 |
+
},
|
704 |
+
"llama2.cc100-zh-Hans": {
|
705 |
+
"vocab_size": 32001,
|
706 |
+
"n_bytes": 2633047,
|
707 |
+
"n_tokens": 1330093,
|
708 |
+
"n_chars": 927311
|
709 |
+
},
|
710 |
+
"llama3.cc100-zh-Hans": {
|
711 |
+
"vocab_size": 128256,
|
712 |
+
"n_bytes": 2633047,
|
713 |
+
"n_tokens": 747405,
|
714 |
+
"n_chars": 927311
|
715 |
+
},
|
716 |
+
"mistral_7b.cc100-zh-Hans": {
|
717 |
+
"vocab_size": 32000,
|
718 |
+
"n_bytes": 2633047,
|
719 |
+
"n_tokens": 1041023,
|
720 |
+
"n_chars": 927311
|
721 |
+
},
|
722 |
+
"mixtral_8_7b.cc100-zh-Hans": {
|
723 |
+
"vocab_size": 32000,
|
724 |
+
"n_bytes": 2633047,
|
725 |
+
"n_tokens": 1041023,
|
726 |
+
"n_chars": 927311
|
727 |
+
},
|
728 |
+
"mobilebert_uncased.cc100-zh-Hans": {
|
729 |
+
"vocab_size": 30522,
|
730 |
+
"n_bytes": 2633047,
|
731 |
+
"n_tokens": 898554,
|
732 |
+
"n_chars": 927311
|
733 |
+
},
|
734 |
+
"moss.cc100-zh-Hans": {
|
735 |
+
"vocab_size": 106072,
|
736 |
+
"n_bytes": 2633047,
|
737 |
+
"n_tokens": 557455,
|
738 |
+
"n_chars": 927311
|
739 |
+
},
|
740 |
+
"mt5_large.cc100-zh-Hans": {
|
741 |
+
"vocab_size": 250100,
|
742 |
+
"n_bytes": 2633047,
|
743 |
+
"n_tokens": 631182,
|
744 |
+
"n_chars": 927311
|
745 |
+
},
|
746 |
+
"olmo_7b.cc100-zh-Hans": {
|
747 |
+
"vocab_size": 50280,
|
748 |
+
"n_bytes": 2633047,
|
749 |
+
"n_tokens": 1220529,
|
750 |
+
"n_chars": 927311
|
751 |
+
},
|
752 |
+
"orion_14b_chat.cc100-zh-Hans": {
|
753 |
+
"vocab_size": 84608,
|
754 |
+
"n_bytes": 2633047,
|
755 |
+
"n_tokens": 529926,
|
756 |
+
"n_chars": 927311
|
757 |
+
},
|
758 |
+
"phi_1.cc100-zh-Hans": {
|
759 |
+
"vocab_size": 50295,
|
760 |
+
"n_bytes": 2633047,
|
761 |
+
"n_tokens": 1876809,
|
762 |
+
"n_chars": 927311
|
763 |
+
},
|
764 |
+
"phi_2.cc100-zh-Hans": {
|
765 |
+
"vocab_size": 50295,
|
766 |
+
"n_bytes": 2633047,
|
767 |
+
"n_tokens": 1876809,
|
768 |
+
"n_chars": 927311
|
769 |
+
},
|
770 |
+
"phi_3_mini.cc100-zh-Hans": {
|
771 |
+
"vocab_size": 32011,
|
772 |
+
"n_bytes": 2633047,
|
773 |
+
"n_tokens": 1330093,
|
774 |
+
"n_chars": 927311
|
775 |
+
},
|
776 |
+
"pko_t5_large.cc100-zh-Hans": {
|
777 |
+
"vocab_size": 50358,
|
778 |
+
"n_bytes": 2633047,
|
779 |
+
"n_tokens": 2533519,
|
780 |
+
"n_chars": 927311
|
781 |
+
},
|
782 |
+
"prompt_clue.cc100-zh-Hans": {
|
783 |
+
"vocab_size": 32128,
|
784 |
+
"n_bytes": 2633047,
|
785 |
+
"n_tokens": 564905,
|
786 |
+
"n_chars": 927311
|
787 |
+
},
|
788 |
+
"qwen1_5_14b_chat.cc100-zh-Hans": {
|
789 |
+
"vocab_size": 151646,
|
790 |
+
"n_bytes": 2633047,
|
791 |
+
"n_tokens": 589211,
|
792 |
+
"n_chars": 927311
|
793 |
+
},
|
794 |
+
"qwen_1_8b_chat.cc100-zh-Hans": {
|
795 |
+
"vocab_size": 151851,
|
796 |
+
"n_bytes": 2633047,
|
797 |
+
"n_tokens": 589211,
|
798 |
+
"n_chars": 927311
|
799 |
+
},
|
800 |
+
"qwen_72b_chat.cc100-zh-Hans": {
|
801 |
+
"vocab_size": 151851,
|
802 |
+
"n_bytes": 2633047,
|
803 |
+
"n_tokens": 589211,
|
804 |
+
"n_chars": 927311
|
805 |
+
},
|
806 |
+
"qwen_7b_chat.cc100-zh-Hans": {
|
807 |
+
"vocab_size": 151851,
|
808 |
+
"n_bytes": 2633047,
|
809 |
+
"n_tokens": 589211,
|
810 |
+
"n_chars": 927311
|
811 |
+
},
|
812 |
+
"roberta_chinese_clue.cc100-zh-Hans": {
|
813 |
+
"vocab_size": 8021,
|
814 |
+
"n_bytes": 2633047,
|
815 |
+
"n_tokens": 907144,
|
816 |
+
"n_chars": 927311
|
817 |
+
},
|
818 |
+
"skywork_13b_base.cc100-zh-Hans": {
|
819 |
+
"vocab_size": 65519,
|
820 |
+
"n_bytes": 2633047,
|
821 |
+
"n_tokens": 663923,
|
822 |
+
"n_chars": 927311
|
823 |
+
},
|
824 |
+
"skywork_13b_math.cc100-zh-Hans": {
|
825 |
+
"vocab_size": 65519,
|
826 |
+
"n_bytes": 2633047,
|
827 |
+
"n_tokens": 663923,
|
828 |
+
"n_chars": 927311
|
829 |
+
},
|
830 |
+
"solar_10_7b.cc100-zh-Hans": {
|
831 |
+
"vocab_size": 32000,
|
832 |
+
"n_bytes": 2633047,
|
833 |
+
"n_tokens": 1041023,
|
834 |
+
"n_chars": 927311
|
835 |
+
},
|
836 |
+
"starchat_alpha.cc100-zh-Hans": {
|
837 |
+
"vocab_size": 49156,
|
838 |
+
"n_bytes": 2633047,
|
839 |
+
"n_tokens": 882018,
|
840 |
+
"n_chars": 927311
|
841 |
+
},
|
842 |
+
"switch_c_2048.cc100-zh-Hans": {
|
843 |
+
"vocab_size": 32100,
|
844 |
+
"n_bytes": 2633047,
|
845 |
+
"n_tokens": 173519,
|
846 |
+
"n_chars": 927311
|
847 |
+
},
|
848 |
+
"t5_base.cc100-zh-Hans": {
|
849 |
+
"vocab_size": 32100,
|
850 |
+
"n_bytes": 2633047,
|
851 |
+
"n_tokens": 173519,
|
852 |
+
"n_chars": 927311
|
853 |
+
},
|
854 |
+
"t5_large.cc100-zh-Hans": {
|
855 |
+
"vocab_size": 32100,
|
856 |
+
"n_bytes": 2633047,
|
857 |
+
"n_tokens": 173519,
|
858 |
+
"n_chars": 927311
|
859 |
+
},
|
860 |
+
"t5_small.cc100-zh-Hans": {
|
861 |
+
"vocab_size": 32100,
|
862 |
+
"n_bytes": 2633047,
|
863 |
+
"n_tokens": 173519,
|
864 |
+
"n_chars": 927311
|
865 |
+
},
|
866 |
+
"text_davinci_003.cc100-zh-Hans": {
|
867 |
+
"vocab_size": 50281,
|
868 |
+
"n_bytes": 2633047,
|
869 |
+
"n_tokens": 1876809,
|
870 |
+
"n_chars": 927311
|
871 |
+
},
|
872 |
+
"tigerbot_13b_chat_v2.cc100-zh-Hans": {
|
873 |
+
"vocab_size": 60515,
|
874 |
+
"n_bytes": 2633047,
|
875 |
+
"n_tokens": 577385,
|
876 |
+
"n_chars": 927311
|
877 |
+
},
|
878 |
+
"tigerbot_70b_chat_v4_4k.cc100-zh-Hans": {
|
879 |
+
"vocab_size": 65110,
|
880 |
+
"n_bytes": 2633047,
|
881 |
+
"n_tokens": 577211,
|
882 |
+
"n_chars": 927311
|
883 |
+
},
|
884 |
+
"wizardcoder_15b_v1.cc100-zh-Hans": {
|
885 |
+
"vocab_size": 49153,
|
886 |
+
"n_bytes": 2633047,
|
887 |
+
"n_tokens": 882018,
|
888 |
+
"n_chars": 927311
|
889 |
+
},
|
890 |
+
"wizardcoder_python_7b_v1.cc100-zh-Hans": {
|
891 |
+
"vocab_size": 32001,
|
892 |
+
"n_bytes": 2633047,
|
893 |
+
"n_tokens": 1330093,
|
894 |
+
"n_chars": 927311
|
895 |
+
},
|
896 |
+
"wizardlm_7b_v1.cc100-zh-Hans": {
|
897 |
+
"vocab_size": 32001,
|
898 |
+
"n_bytes": 2633047,
|
899 |
+
"n_tokens": 1330093,
|
900 |
+
"n_chars": 927311
|
901 |
+
},
|
902 |
+
"wizardmath_70b_v1.cc100-zh-Hans": {
|
903 |
+
"vocab_size": 32002,
|
904 |
+
"n_bytes": 2633047,
|
905 |
+
"n_tokens": 1330093,
|
906 |
+
"n_chars": 927311
|
907 |
+
},
|
908 |
+
"xlm_roberta.cc100-zh-Hans": {
|
909 |
+
"vocab_size": 250002,
|
910 |
+
"n_bytes": 2633047,
|
911 |
+
"n_tokens": 619844,
|
912 |
+
"n_chars": 927311
|
913 |
+
},
|
914 |
+
"yi_34b.cc100-zh-Hans": {
|
915 |
+
"vocab_size": 64000,
|
916 |
+
"n_bytes": 2633047,
|
917 |
+
"n_tokens": 588729,
|
918 |
+
"n_chars": 927311
|
919 |
+
},
|
920 |
+
"yi_6b.cc100-zh-Hans": {
|
921 |
+
"vocab_size": 64000,
|
922 |
+
"n_bytes": 2633047,
|
923 |
+
"n_tokens": 588729,
|
924 |
+
"n_chars": 927311
|
925 |
+
},
|
926 |
+
"yi_vl34b.cc100-zh-Hans": {
|
927 |
+
"vocab_size": 64000,
|
928 |
+
"n_bytes": 2633047,
|
929 |
+
"n_tokens": 596166,
|
930 |
+
"n_chars": 927311
|
931 |
+
},
|
932 |
+
"zephyr_7b_beta.cc100-zh-Hans": {
|
933 |
+
"vocab_size": 32000,
|
934 |
+
"n_bytes": 2633047,
|
935 |
+
"n_tokens": 1041023,
|
936 |
+
"n_chars": 927311
|
937 |
+
},
|
938 |
+
"amber.cc100-es": {
|
939 |
+
"vocab_size": 32000,
|
940 |
+
"n_bytes": 1664455,
|
941 |
+
"n_tokens": 492235,
|
942 |
+
"n_chars": 1630297
|
943 |
+
},
|
944 |
+
"aya_101.cc100-es": {
|
945 |
+
"vocab_size": 250100,
|
946 |
+
"n_bytes": 1664455,
|
947 |
+
"n_tokens": 472231,
|
948 |
+
"n_chars": 1630297
|
949 |
+
},
|
950 |
+
"baichuan.cc100-es": {
|
951 |
+
"vocab_size": 64000,
|
952 |
+
"n_bytes": 1664455,
|
953 |
+
"n_tokens": 585804,
|
954 |
+
"n_chars": 1630297
|
955 |
+
},
|
956 |
+
"baichuan2.cc100-es": {
|
957 |
+
"vocab_size": 125696,
|
958 |
+
"n_bytes": 1664455,
|
959 |
+
"n_tokens": 551326,
|
960 |
+
"n_chars": 1630297
|
961 |
+
},
|
962 |
+
"bert_base_cased.cc100-es": {
|
963 |
+
"vocab_size": 28996,
|
964 |
+
"n_bytes": 1664455,
|
965 |
+
"n_tokens": 630231,
|
966 |
+
"n_chars": 1630297
|
967 |
+
},
|
968 |
+
"bert_base_chinese.cc100-es": {
|
969 |
+
"vocab_size": 21128,
|
970 |
+
"n_bytes": 1664455,
|
971 |
+
"n_tokens": 609419,
|
972 |
+
"n_chars": 1630297
|
973 |
+
},
|
974 |
+
"bert_base_uncased.cc100-es": {
|
975 |
+
"vocab_size": 30522,
|
976 |
+
"n_bytes": 1664455,
|
977 |
+
"n_tokens": 558042,
|
978 |
+
"n_chars": 1630297
|
979 |
+
},
|
980 |
+
"bloom.cc100-es": {
|
981 |
+
"vocab_size": 250680,
|
982 |
+
"n_bytes": 1664455,
|
983 |
+
"n_tokens": 350793,
|
984 |
+
"n_chars": 1630297
|
985 |
+
},
|
986 |
+
"byt5_small.cc100-es": {
|
987 |
+
"vocab_size": 384,
|
988 |
+
"n_bytes": 1664455,
|
989 |
+
"n_tokens": 1674455,
|
990 |
+
"n_chars": 1630297
|
991 |
+
},
|
992 |
+
"character_glm_6b.cc100-es": {
|
993 |
+
"vocab_size": 64789,
|
994 |
+
"n_bytes": 1664455,
|
995 |
+
"n_tokens": 566501,
|
996 |
+
"n_chars": 1630297
|
997 |
+
},
|
998 |
+
"chatglm2_6b.cc100-es": {
|
999 |
+
"vocab_size": 64787,
|
1000 |
+
"n_bytes": 1664455,
|
1001 |
+
"n_tokens": 566476,
|
1002 |
+
"n_chars": 1630297
|
1003 |
+
},
|
1004 |
+
"chatglm3_6b.cc100-es": {
|
1005 |
+
"vocab_size": 64796,
|
1006 |
+
"n_bytes": 1664455,
|
1007 |
+
"n_tokens": 566501,
|
1008 |
+
"n_chars": 1630297
|
1009 |
+
},
|
1010 |
+
"chatglm_6b.cc100-es": {
|
1011 |
+
"vocab_size": 150344,
|
1012 |
+
"n_bytes": 1664455,
|
1013 |
+
"n_tokens": 514848,
|
1014 |
+
"n_chars": 1630297
|
1015 |
+
},
|
1016 |
+
"chatyuan_large_v2.cc100-es": {
|
1017 |
+
"vocab_size": 32128,
|
1018 |
+
"n_bytes": 1664455,
|
1019 |
+
"n_tokens": 889530,
|
1020 |
+
"n_chars": 1630297
|
1021 |
+
},
|
1022 |
+
"chinese_llama.cc100-es": {
|
1023 |
+
"vocab_size": 49953,
|
1024 |
+
"n_bytes": 1664455,
|
1025 |
+
"n_tokens": 486672,
|
1026 |
+
"n_chars": 1630297
|
1027 |
+
},
|
1028 |
+
"chinese_llama2.cc100-es": {
|
1029 |
+
"vocab_size": 55296,
|
1030 |
+
"n_bytes": 1664455,
|
1031 |
+
"n_tokens": 492235,
|
1032 |
+
"n_chars": 1630297
|
1033 |
+
},
|
1034 |
+
"code_davinci_002.cc100-es": {
|
1035 |
+
"vocab_size": 50281,
|
1036 |
+
"n_bytes": 1664455,
|
1037 |
+
"n_tokens": 569853,
|
1038 |
+
"n_chars": 1630297
|
1039 |
+
},
|
1040 |
+
"crystal_coder.cc100-es": {
|
1041 |
+
"vocab_size": 32022,
|
1042 |
+
"n_bytes": 1664455,
|
1043 |
+
"n_tokens": 482235,
|
1044 |
+
"n_chars": 1630297
|
1045 |
+
},
|
1046 |
+
"dbrx_instruct.cc100-es": {
|
1047 |
+
"vocab_size": 100280,
|
1048 |
+
"n_bytes": 1664455,
|
1049 |
+
"n_tokens": 433875,
|
1050 |
+
"n_chars": 1630297
|
1051 |
+
},
|
1052 |
+
"deepseek_coder_33b_instruct.cc100-es": {
|
1053 |
+
"vocab_size": 32022,
|
1054 |
+
"n_bytes": 1664455,
|
1055 |
+
"n_tokens": 523884,
|
1056 |
+
"n_chars": 1630297
|
1057 |
+
},
|
1058 |
+
"deepseek_llm_7b_base.cc100-es": {
|
1059 |
+
"vocab_size": 100015,
|
1060 |
+
"n_bytes": 1664455,
|
1061 |
+
"n_tokens": 480877,
|
1062 |
+
"n_chars": 1630297
|
1063 |
+
},
|
1064 |
+
"falcon_180b.cc100-es": {
|
1065 |
+
"vocab_size": 65024,
|
1066 |
+
"n_bytes": 1664455,
|
1067 |
+
"n_tokens": 442138,
|
1068 |
+
"n_chars": 1630297
|
1069 |
+
},
|
1070 |
+
"falcon_7b.cc100-es": {
|
1071 |
+
"vocab_size": 65024,
|
1072 |
+
"n_bytes": 1664455,
|
1073 |
+
"n_tokens": 442138,
|
1074 |
+
"n_chars": 1630297
|
1075 |
+
},
|
1076 |
+
"fastchat_t5_3b.cc100-es": {
|
1077 |
+
"vocab_size": 32110,
|
1078 |
+
"n_bytes": 1664455,
|
1079 |
+
"n_tokens": 970105,
|
1080 |
+
"n_chars": 1630297
|
1081 |
+
},
|
1082 |
+
"flan_t5_base.cc100-es": {
|
1083 |
+
"vocab_size": 32100,
|
1084 |
+
"n_bytes": 1664455,
|
1085 |
+
"n_tokens": 706405,
|
1086 |
+
"n_chars": 1630297
|
1087 |
+
},
|
1088 |
+
"gemma_7b.cc100-es": {
|
1089 |
+
"vocab_size": 256000,
|
1090 |
+
"n_bytes": 1664455,
|
1091 |
+
"n_tokens": 371321,
|
1092 |
+
"n_chars": 1630297
|
1093 |
+
},
|
1094 |
+
"gpt2.cc100-es": {
|
1095 |
+
"vocab_size": 50257,
|
1096 |
+
"n_bytes": 1664455,
|
1097 |
+
"n_tokens": 569853,
|
1098 |
+
"n_chars": 1630297
|
1099 |
+
},
|
1100 |
+
"gpt2_chinese.cc100-es": {
|
1101 |
+
"vocab_size": 21128,
|
1102 |
+
"n_bytes": 1664455,
|
1103 |
+
"n_tokens": 703390,
|
1104 |
+
"n_chars": 1630297
|
1105 |
+
},
|
1106 |
+
"gpt_35_turbo.cc100-es": {
|
1107 |
+
"vocab_size": 100277,
|
1108 |
+
"n_bytes": 1664455,
|
1109 |
+
"n_tokens": 433875,
|
1110 |
+
"n_chars": 1630297
|
1111 |
+
},
|
1112 |
+
"gpt_4.cc100-es": {
|
1113 |
+
"vocab_size": 100277,
|
1114 |
+
"n_bytes": 1664455,
|
1115 |
+
"n_tokens": 433875,
|
1116 |
+
"n_chars": 1630297
|
1117 |
+
},
|
1118 |
+
"gpt_nexo_20b.cc100-es": {
|
1119 |
+
"vocab_size": 50277,
|
1120 |
+
"n_bytes": 1664455,
|
1121 |
+
"n_tokens": 494577,
|
1122 |
+
"n_chars": 1630297
|
1123 |
+
},
|
1124 |
+
"grok_1.cc100-es": {
|
1125 |
+
"vocab_size": 131072,
|
1126 |
+
"n_bytes": 1664455,
|
1127 |
+
"n_tokens": 449392,
|
1128 |
+
"n_chars": 1630297
|
1129 |
+
},
|
1130 |
+
"internlm2_chat_7b.cc100-es": {
|
1131 |
+
"vocab_size": 92544,
|
1132 |
+
"n_bytes": 1664455,
|
1133 |
+
"n_tokens": 518871,
|
1134 |
+
"n_chars": 1630297
|
1135 |
+
},
|
1136 |
+
"internlm2_math_7b.cc100-es": {
|
1137 |
+
"vocab_size": 92544,
|
1138 |
+
"n_bytes": 1664455,
|
1139 |
+
"n_tokens": 518871,
|
1140 |
+
"n_chars": 1630297
|
1141 |
+
},
|
1142 |
+
"internlm_chat_7b.cc100-es": {
|
1143 |
+
"vocab_size": 103168,
|
1144 |
+
"n_bytes": 1664455,
|
1145 |
+
"n_tokens": 516572,
|
1146 |
+
"n_chars": 1630297
|
1147 |
+
},
|
1148 |
+
"internlm_xcomposer_7b.cc100-es": {
|
1149 |
+
"vocab_size": 103168,
|
1150 |
+
"n_bytes": 1664455,
|
1151 |
+
"n_tokens": 516572,
|
1152 |
+
"n_chars": 1630297
|
1153 |
+
},
|
1154 |
+
"jamba_v0_1.cc100-es": {
|
1155 |
+
"vocab_size": 65536,
|
1156 |
+
"n_bytes": 1664455,
|
1157 |
+
"n_tokens": 420883,
|
1158 |
+
"n_chars": 1630297
|
1159 |
+
},
|
1160 |
+
"kplug.cc100-es": {
|
1161 |
+
"vocab_size": 10261,
|
1162 |
+
"n_bytes": 1664455,
|
1163 |
+
"n_tokens": 704804,
|
1164 |
+
"n_chars": 1630297
|
1165 |
+
},
|
1166 |
+
"llama.cc100-es": {
|
1167 |
+
"vocab_size": 32000,
|
1168 |
+
"n_bytes": 1664455,
|
1169 |
+
"n_tokens": 492235,
|
1170 |
+
"n_chars": 1630297
|
1171 |
+
},
|
1172 |
+
"llama2.cc100-es": {
|
1173 |
+
"vocab_size": 32001,
|
1174 |
+
"n_bytes": 1664455,
|
1175 |
+
"n_tokens": 492235,
|
1176 |
+
"n_chars": 1630297
|
1177 |
+
},
|
1178 |
+
"llama3.cc100-es": {
|
1179 |
+
"vocab_size": 128256,
|
1180 |
+
"n_bytes": 1664455,
|
1181 |
+
"n_tokens": 433289,
|
1182 |
+
"n_chars": 1630297
|
1183 |
+
},
|
1184 |
+
"mistral_7b.cc100-es": {
|
1185 |
+
"vocab_size": 32000,
|
1186 |
+
"n_bytes": 1664455,
|
1187 |
+
"n_tokens": 513915,
|
1188 |
+
"n_chars": 1630297
|
1189 |
+
},
|
1190 |
+
"mixtral_8_7b.cc100-es": {
|
1191 |
+
"vocab_size": 32000,
|
1192 |
+
"n_bytes": 1664455,
|
1193 |
+
"n_tokens": 513915,
|
1194 |
+
"n_chars": 1630297
|
1195 |
+
},
|
1196 |
+
"mobilebert_uncased.cc100-es": {
|
1197 |
+
"vocab_size": 30522,
|
1198 |
+
"n_bytes": 1664455,
|
1199 |
+
"n_tokens": 558042,
|
1200 |
+
"n_chars": 1630297
|
1201 |
+
},
|
1202 |
+
"moss.cc100-es": {
|
1203 |
+
"vocab_size": 106072,
|
1204 |
+
"n_bytes": 1664455,
|
1205 |
+
"n_tokens": 568539,
|
1206 |
+
"n_chars": 1630297
|
1207 |
+
},
|
1208 |
+
"mt5_large.cc100-es": {
|
1209 |
+
"vocab_size": 250100,
|
1210 |
+
"n_bytes": 1664455,
|
1211 |
+
"n_tokens": 472231,
|
1212 |
+
"n_chars": 1630297
|
1213 |
+
},
|
1214 |
+
"olmo_7b.cc100-es": {
|
1215 |
+
"vocab_size": 50280,
|
1216 |
+
"n_bytes": 1664455,
|
1217 |
+
"n_tokens": 494577,
|
1218 |
+
"n_chars": 1630297
|
1219 |
+
},
|
1220 |
+
"orion_14b_chat.cc100-es": {
|
1221 |
+
"vocab_size": 84608,
|
1222 |
+
"n_bytes": 1664455,
|
1223 |
+
"n_tokens": 628571,
|
1224 |
+
"n_chars": 1630297
|
1225 |
+
},
|
1226 |
+
"phi_1.cc100-es": {
|
1227 |
+
"vocab_size": 50295,
|
1228 |
+
"n_bytes": 1664455,
|
1229 |
+
"n_tokens": 569853,
|
1230 |
+
"n_chars": 1630297
|
1231 |
+
},
|
1232 |
+
"phi_2.cc100-es": {
|
1233 |
+
"vocab_size": 50295,
|
1234 |
+
"n_bytes": 1664455,
|
1235 |
+
"n_tokens": 569853,
|
1236 |
+
"n_chars": 1630297
|
1237 |
+
},
|
1238 |
+
"phi_3_mini.cc100-es": {
|
1239 |
+
"vocab_size": 32011,
|
1240 |
+
"n_bytes": 1664455,
|
1241 |
+
"n_tokens": 492235,
|
1242 |
+
"n_chars": 1630297
|
1243 |
+
},
|
1244 |
+
"pko_t5_large.cc100-es": {
|
1245 |
+
"vocab_size": 50358,
|
1246 |
+
"n_bytes": 1664455,
|
1247 |
+
"n_tokens": 1134056,
|
1248 |
+
"n_chars": 1630297
|
1249 |
+
},
|
1250 |
+
"prompt_clue.cc100-es": {
|
1251 |
+
"vocab_size": 32128,
|
1252 |
+
"n_bytes": 1664455,
|
1253 |
+
"n_tokens": 889530,
|
1254 |
+
"n_chars": 1630297
|
1255 |
+
},
|
1256 |
+
"qwen1_5_14b_chat.cc100-es": {
|
1257 |
+
"vocab_size": 151646,
|
1258 |
+
"n_bytes": 1664455,
|
1259 |
+
"n_tokens": 434264,
|
1260 |
+
"n_chars": 1630297
|
1261 |
+
},
|
1262 |
+
"qwen_1_8b_chat.cc100-es": {
|
1263 |
+
"vocab_size": 151851,
|
1264 |
+
"n_bytes": 1664455,
|
1265 |
+
"n_tokens": 434264,
|
1266 |
+
"n_chars": 1630297
|
1267 |
+
},
|
1268 |
+
"qwen_72b_chat.cc100-es": {
|
1269 |
+
"vocab_size": 151851,
|
1270 |
+
"n_bytes": 1664455,
|
1271 |
+
"n_tokens": 434264,
|
1272 |
+
"n_chars": 1630297
|
1273 |
+
},
|
1274 |
+
"qwen_7b_chat.cc100-es": {
|
1275 |
+
"vocab_size": 151851,
|
1276 |
+
"n_bytes": 1664455,
|
1277 |
+
"n_tokens": 434264,
|
1278 |
+
"n_chars": 1630297
|
1279 |
+
},
|
1280 |
+
"roberta_chinese_clue.cc100-es": {
|
1281 |
+
"vocab_size": 8021,
|
1282 |
+
"n_bytes": 1664455,
|
1283 |
+
"n_tokens": 866564,
|
1284 |
+
"n_chars": 1630297
|
1285 |
+
},
|
1286 |
+
"skywork_13b_base.cc100-es": {
|
1287 |
+
"vocab_size": 65519,
|
1288 |
+
"n_bytes": 1664455,
|
1289 |
+
"n_tokens": 492211,
|
1290 |
+
"n_chars": 1630297
|
1291 |
+
},
|
1292 |
+
"skywork_13b_math.cc100-es": {
|
1293 |
+
"vocab_size": 65519,
|
1294 |
+
"n_bytes": 1664455,
|
1295 |
+
"n_tokens": 492211,
|
1296 |
+
"n_chars": 1630297
|
1297 |
+
},
|
1298 |
+
"solar_10_7b.cc100-es": {
|
1299 |
+
"vocab_size": 32000,
|
1300 |
+
"n_bytes": 1664455,
|
1301 |
+
"n_tokens": 513915,
|
1302 |
+
"n_chars": 1630297
|
1303 |
+
},
|
1304 |
+
"starchat_alpha.cc100-es": {
|
1305 |
+
"vocab_size": 49156,
|
1306 |
+
"n_bytes": 1664455,
|
1307 |
+
"n_tokens": 530592,
|
1308 |
+
"n_chars": 1630297
|
1309 |
+
},
|
1310 |
+
"switch_c_2048.cc100-es": {
|
1311 |
+
"vocab_size": 32100,
|
1312 |
+
"n_bytes": 1664455,
|
1313 |
+
"n_tokens": 706400,
|
1314 |
+
"n_chars": 1630297
|
1315 |
+
},
|
1316 |
+
"t5_base.cc100-es": {
|
1317 |
+
"vocab_size": 32100,
|
1318 |
+
"n_bytes": 1664455,
|
1319 |
+
"n_tokens": 706400,
|
1320 |
+
"n_chars": 1630297
|
1321 |
+
},
|
1322 |
+
"t5_large.cc100-es": {
|
1323 |
+
"vocab_size": 32100,
|
1324 |
+
"n_bytes": 1664455,
|
1325 |
+
"n_tokens": 706400,
|
1326 |
+
"n_chars": 1630297
|
1327 |
+
},
|
1328 |
+
"t5_small.cc100-es": {
|
1329 |
+
"vocab_size": 32100,
|
1330 |
+
"n_bytes": 1664455,
|
1331 |
+
"n_tokens": 706400,
|
1332 |
+
"n_chars": 1630297
|
1333 |
+
},
|
1334 |
+
"text_davinci_003.cc100-es": {
|
1335 |
+
"vocab_size": 50281,
|
1336 |
+
"n_bytes": 1664455,
|
1337 |
+
"n_tokens": 569853,
|
1338 |
+
"n_chars": 1630297
|
1339 |
+
},
|
1340 |
+
"tigerbot_13b_chat_v2.cc100-es": {
|
1341 |
+
"vocab_size": 60515,
|
1342 |
+
"n_bytes": 1664455,
|
1343 |
+
"n_tokens": 482553,
|
1344 |
+
"n_chars": 1630297
|
1345 |
+
},
|
1346 |
+
"tigerbot_70b_chat_v4_4k.cc100-es": {
|
1347 |
+
"vocab_size": 65110,
|
1348 |
+
"n_bytes": 1664455,
|
1349 |
+
"n_tokens": 484099,
|
1350 |
+
"n_chars": 1630297
|
1351 |
+
},
|
1352 |
+
"wizardcoder_15b_v1.cc100-es": {
|
1353 |
+
"vocab_size": 49153,
|
1354 |
+
"n_bytes": 1664455,
|
1355 |
+
"n_tokens": 530592,
|
1356 |
+
"n_chars": 1630297
|
1357 |
+
},
|
1358 |
+
"wizardcoder_python_7b_v1.cc100-es": {
|
1359 |
+
"vocab_size": 32001,
|
1360 |
+
"n_bytes": 1664455,
|
1361 |
+
"n_tokens": 492235,
|
1362 |
+
"n_chars": 1630297
|
1363 |
+
},
|
1364 |
+
"wizardlm_7b_v1.cc100-es": {
|
1365 |
+
"vocab_size": 32001,
|
1366 |
+
"n_bytes": 1664455,
|
1367 |
+
"n_tokens": 492235,
|
1368 |
+
"n_chars": 1630297
|
1369 |
+
},
|
1370 |
+
"wizardmath_70b_v1.cc100-es": {
|
1371 |
+
"vocab_size": 32002,
|
1372 |
+
"n_bytes": 1664455,
|
1373 |
+
"n_tokens": 492235,
|
1374 |
+
"n_chars": 1630297
|
1375 |
+
},
|
1376 |
+
"xlm_roberta.cc100-es": {
|
1377 |
+
"vocab_size": 250002,
|
1378 |
+
"n_bytes": 1664455,
|
1379 |
+
"n_tokens": 399850,
|
1380 |
+
"n_chars": 1630297
|
1381 |
+
},
|
1382 |
+
"yi_34b.cc100-es": {
|
1383 |
+
"vocab_size": 64000,
|
1384 |
+
"n_bytes": 1664455,
|
1385 |
+
"n_tokens": 577018,
|
1386 |
+
"n_chars": 1630297
|
1387 |
+
},
|
1388 |
+
"yi_6b.cc100-es": {
|
1389 |
+
"vocab_size": 64000,
|
1390 |
+
"n_bytes": 1664455,
|
1391 |
+
"n_tokens": 577018,
|
1392 |
+
"n_chars": 1630297
|
1393 |
+
},
|
1394 |
+
"yi_vl34b.cc100-es": {
|
1395 |
+
"vocab_size": 64000,
|
1396 |
+
"n_bytes": 1664455,
|
1397 |
+
"n_tokens": 576794,
|
1398 |
+
"n_chars": 1630297
|
1399 |
+
},
|
1400 |
+
"zephyr_7b_beta.cc100-es": {
|
1401 |
+
"vocab_size": 32000,
|
1402 |
+
"n_bytes": 1664455,
|
1403 |
+
"n_tokens": 513915,
|
1404 |
+
"n_chars": 1630297
|
1405 |
+
},
|
1406 |
+
"aya_101.cc100-fr": {
|
1407 |
+
"vocab_size": 250100,
|
1408 |
+
"n_bytes": 1540504,
|
1409 |
+
"n_tokens": 470944,
|
1410 |
+
"n_chars": 1484970
|
1411 |
+
},
|
1412 |
+
"baichuan.cc100-fr": {
|
1413 |
+
"vocab_size": 64000,
|
1414 |
+
"n_bytes": 1540504,
|
1415 |
+
"n_tokens": 540430,
|
1416 |
+
"n_chars": 1484970
|
1417 |
+
},
|
1418 |
+
"baichuan2.cc100-fr": {
|
1419 |
+
"vocab_size": 125696,
|
1420 |
+
"n_bytes": 1540504,
|
1421 |
+
"n_tokens": 512313,
|
1422 |
+
"n_chars": 1484970
|
1423 |
+
},
|
1424 |
+
"bert_base_cased.cc100-fr": {
|
1425 |
+
"vocab_size": 28996,
|
1426 |
+
"n_bytes": 1540504,
|
1427 |
+
"n_tokens": 583210,
|
1428 |
+
"n_chars": 1484970
|
1429 |
+
},
|
1430 |
+
"bert_base_chinese.cc100-fr": {
|
1431 |
+
"vocab_size": 21128,
|
1432 |
+
"n_bytes": 1540504,
|
1433 |
+
"n_tokens": 553134,
|
1434 |
+
"n_chars": 1484970
|
1435 |
+
},
|
1436 |
+
"bert_base_uncased.cc100-fr": {
|
1437 |
+
"vocab_size": 30522,
|
1438 |
+
"n_bytes": 1540504,
|
1439 |
+
"n_tokens": 504075,
|
1440 |
+
"n_chars": 1484970
|
1441 |
+
},
|
1442 |
+
"bloom.cc100-fr": {
|
1443 |
+
"vocab_size": 250680,
|
1444 |
+
"n_bytes": 1540504,
|
1445 |
+
"n_tokens": 321639,
|
1446 |
+
"n_chars": 1484970
|
1447 |
+
},
|
1448 |
+
"byt5_small.cc100-fr": {
|
1449 |
+
"vocab_size": 384,
|
1450 |
+
"n_bytes": 1540504,
|
1451 |
+
"n_tokens": 1550504,
|
1452 |
+
"n_chars": 1484970
|
1453 |
+
},
|
1454 |
+
"character_glm_6b.cc100-fr": {
|
1455 |
+
"vocab_size": 64789,
|
1456 |
+
"n_bytes": 1540504,
|
1457 |
+
"n_tokens": 515052,
|
1458 |
+
"n_chars": 1484970
|
1459 |
+
},
|
1460 |
+
"chatglm2_6b.cc100-fr": {
|
1461 |
+
"vocab_size": 64787,
|
1462 |
+
"n_bytes": 1540504,
|
1463 |
+
"n_tokens": 515028,
|
1464 |
+
"n_chars": 1484970
|
1465 |
+
},
|
1466 |
+
"chatglm3_6b.cc100-fr": {
|
1467 |
+
"vocab_size": 64796,
|
1468 |
+
"n_bytes": 1540504,
|
1469 |
+
"n_tokens": 515052,
|
1470 |
+
"n_chars": 1484970
|
1471 |
+
},
|
1472 |
+
"chatglm_6b.cc100-fr": {
|
1473 |
+
"vocab_size": 150344,
|
1474 |
+
"n_bytes": 1540504,
|
1475 |
+
"n_tokens": 499261,
|
1476 |
+
"n_chars": 1484970
|
1477 |
+
},
|
1478 |
+
"chatyuan_large_v2.cc100-fr": {
|
1479 |
+
"vocab_size": 32128,
|
1480 |
+
"n_bytes": 1540504,
|
1481 |
+
"n_tokens": 822012,
|
1482 |
+
"n_chars": 1484970
|
1483 |
+
},
|
1484 |
+
"chinese_llama.cc100-fr": {
|
1485 |
+
"vocab_size": 49953,
|
1486 |
+
"n_bytes": 1540504,
|
1487 |
+
"n_tokens": 450352,
|
1488 |
+
"n_chars": 1484970
|
1489 |
+
},
|
1490 |
+
"chinese_llama2.cc100-fr": {
|
1491 |
+
"vocab_size": 55296,
|
1492 |
+
"n_bytes": 1540504,
|
1493 |
+
"n_tokens": 457243,
|
1494 |
+
"n_chars": 1484970
|
1495 |
+
},
|
1496 |
+
"code_davinci_002.cc100-fr": {
|
1497 |
+
"vocab_size": 50281,
|
1498 |
+
"n_bytes": 1540504,
|
1499 |
+
"n_tokens": 521776,
|
1500 |
+
"n_chars": 1484970
|
1501 |
+
},
|
1502 |
+
"crystal_coder.cc100-fr": {
|
1503 |
+
"vocab_size": 32022,
|
1504 |
+
"n_bytes": 1540504,
|
1505 |
+
"n_tokens": 447243,
|
1506 |
+
"n_chars": 1484970
|
1507 |
+
},
|
1508 |
+
"dbrx_instruct.cc100-fr": {
|
1509 |
+
"vocab_size": 100280,
|
1510 |
+
"n_bytes": 1540504,
|
1511 |
+
"n_tokens": 412685,
|
1512 |
+
"n_chars": 1484970
|
1513 |
+
},
|
1514 |
+
"deepseek_coder_33b_instruct.cc100-fr": {
|
1515 |
+
"vocab_size": 32022,
|
1516 |
+
"n_bytes": 1540504,
|
1517 |
+
"n_tokens": 537538,
|
1518 |
+
"n_chars": 1484970
|
1519 |
+
},
|
1520 |
+
"deepseek_llm_7b_base.cc100-fr": {
|
1521 |
+
"vocab_size": 100015,
|
1522 |
+
"n_bytes": 1540504,
|
1523 |
+
"n_tokens": 507693,
|
1524 |
+
"n_chars": 1484970
|
1525 |
+
},
|
1526 |
+
"falcon_180b.cc100-fr": {
|
1527 |
+
"vocab_size": 65024,
|
1528 |
+
"n_bytes": 1540504,
|
1529 |
+
"n_tokens": 407853,
|
1530 |
+
"n_chars": 1484970
|
1531 |
+
},
|
1532 |
+
"falcon_7b.cc100-fr": {
|
1533 |
+
"vocab_size": 65024,
|
1534 |
+
"n_bytes": 1540504,
|
1535 |
+
"n_tokens": 407853,
|
1536 |
+
"n_chars": 1484970
|
1537 |
+
},
|
1538 |
+
"fastchat_t5_3b.cc100-fr": {
|
1539 |
+
"vocab_size": 32110,
|
1540 |
+
"n_bytes": 1540504,
|
1541 |
+
"n_tokens": 717675,
|
1542 |
+
"n_chars": 1484970
|
1543 |
+
},
|
1544 |
+
"flan_t5_base.cc100-fr": {
|
1545 |
+
"vocab_size": 32100,
|
1546 |
+
"n_bytes": 1540504,
|
1547 |
+
"n_tokens": 476135,
|
1548 |
+
"n_chars": 1484970
|
1549 |
+
},
|
1550 |
+
"gemma_7b.cc100-fr": {
|
1551 |
+
"vocab_size": 256000,
|
1552 |
+
"n_bytes": 1540504,
|
1553 |
+
"n_tokens": 374551,
|
1554 |
+
"n_chars": 1484970
|
1555 |
+
},
|
1556 |
+
"gpt2.cc100-fr": {
|
1557 |
+
"vocab_size": 50257,
|
1558 |
+
"n_bytes": 1540504,
|
1559 |
+
"n_tokens": 521776,
|
1560 |
+
"n_chars": 1484970
|
1561 |
+
},
|
1562 |
+
"gpt2_chinese.cc100-fr": {
|
1563 |
+
"vocab_size": 21128,
|
1564 |
+
"n_bytes": 1540504,
|
1565 |
+
"n_tokens": 636442,
|
1566 |
+
"n_chars": 1484970
|
1567 |
+
},
|
1568 |
+
"gpt_35_turbo.cc100-fr": {
|
1569 |
+
"vocab_size": 100277,
|
1570 |
+
"n_bytes": 1540504,
|
1571 |
+
"n_tokens": 412685,
|
1572 |
+
"n_chars": 1484970
|
1573 |
+
},
|
1574 |
+
"gpt_4.cc100-fr": {
|
1575 |
+
"vocab_size": 100277,
|
1576 |
+
"n_bytes": 1540504,
|
1577 |
+
"n_tokens": 412685,
|
1578 |
+
"n_chars": 1484970
|
1579 |
+
},
|
1580 |
+
"gpt_nexo_20b.cc100-fr": {
|
1581 |
+
"vocab_size": 50277,
|
1582 |
+
"n_bytes": 1540504,
|
1583 |
+
"n_tokens": 458961,
|
1584 |
+
"n_chars": 1484970
|
1585 |
+
},
|
1586 |
+
"grok_1.cc100-fr": {
|
1587 |
+
"vocab_size": 131072,
|
1588 |
+
"n_bytes": 1540504,
|
1589 |
+
"n_tokens": 428298,
|
1590 |
+
"n_chars": 1484970
|
1591 |
+
},
|
1592 |
+
"internlm2_chat_7b.cc100-fr": {
|
1593 |
+
"vocab_size": 92544,
|
1594 |
+
"n_bytes": 1540504,
|
1595 |
+
"n_tokens": 496629,
|
1596 |
+
"n_chars": 1484970
|
1597 |
+
},
|
1598 |
+
"internlm2_math_7b.cc100-fr": {
|
1599 |
+
"vocab_size": 92544,
|
1600 |
+
"n_bytes": 1540504,
|
1601 |
+
"n_tokens": 496629,
|
1602 |
+
"n_chars": 1484970
|
1603 |
+
},
|
1604 |
+
"internlm_chat_7b.cc100-fr": {
|
1605 |
+
"vocab_size": 103168,
|
1606 |
+
"n_bytes": 1540504,
|
1607 |
+
"n_tokens": 495045,
|
1608 |
+
"n_chars": 1484970
|
1609 |
+
},
|
1610 |
+
"internlm_xcomposer_7b.cc100-fr": {
|
1611 |
+
"vocab_size": 103168,
|
1612 |
+
"n_bytes": 1540504,
|
1613 |
+
"n_tokens": 495045,
|
1614 |
+
"n_chars": 1484970
|
1615 |
+
},
|
1616 |
+
"jamba_v0_1.cc100-fr": {
|
1617 |
+
"vocab_size": 65536,
|
1618 |
+
"n_bytes": 1540504,
|
1619 |
+
"n_tokens": 412899,
|
1620 |
+
"n_chars": 1484970
|
1621 |
+
},
|
1622 |
+
"kplug.cc100-fr": {
|
1623 |
+
"vocab_size": 10261,
|
1624 |
+
"n_bytes": 1540504,
|
1625 |
+
"n_tokens": 638107,
|
1626 |
+
"n_chars": 1484970
|
1627 |
+
},
|
1628 |
+
"llama.cc100-fr": {
|
1629 |
+
"vocab_size": 32000,
|
1630 |
+
"n_bytes": 1540504,
|
1631 |
+
"n_tokens": 457243,
|
1632 |
+
"n_chars": 1484970
|
1633 |
+
},
|
1634 |
+
"llama2.cc100-fr": {
|
1635 |
+
"vocab_size": 32001,
|
1636 |
+
"n_bytes": 1540504,
|
1637 |
+
"n_tokens": 457243,
|
1638 |
+
"n_chars": 1484970
|
1639 |
+
},
|
1640 |
+
"llama3.cc100-fr": {
|
1641 |
+
"vocab_size": 128256,
|
1642 |
+
"n_bytes": 1540504,
|
1643 |
+
"n_tokens": 412146,
|
1644 |
+
"n_chars": 1484970
|
1645 |
+
},
|
1646 |
+
"mistral_7b.cc100-fr": {
|
1647 |
+
"vocab_size": 32000,
|
1648 |
+
"n_bytes": 1540504,
|
1649 |
+
"n_tokens": 476666,
|
1650 |
+
"n_chars": 1484970
|
1651 |
+
},
|
1652 |
+
"mixtral_8_7b.cc100-fr": {
|
1653 |
+
"vocab_size": 32000,
|
1654 |
+
"n_bytes": 1540504,
|
1655 |
+
"n_tokens": 476666,
|
1656 |
+
"n_chars": 1484970
|
1657 |
+
},
|
1658 |
+
"mobilebert_uncased.cc100-fr": {
|
1659 |
+
"vocab_size": 30522,
|
1660 |
+
"n_bytes": 1540504,
|
1661 |
+
"n_tokens": 504075,
|
1662 |
+
"n_chars": 1484970
|
1663 |
+
},
|
1664 |
+
"moss.cc100-fr": {
|
1665 |
+
"vocab_size": 106072,
|
1666 |
+
"n_bytes": 1540504,
|
1667 |
+
"n_tokens": 515669,
|
1668 |
+
"n_chars": 1484970
|
1669 |
+
},
|
1670 |
+
"mt5_large.cc100-fr": {
|
1671 |
+
"vocab_size": 250100,
|
1672 |
+
"n_bytes": 1540504,
|
1673 |
+
"n_tokens": 470944,
|
1674 |
+
"n_chars": 1484970
|
1675 |
+
},
|
1676 |
+
"olmo_7b.cc100-fr": {
|
1677 |
+
"vocab_size": 50280,
|
1678 |
+
"n_bytes": 1540504,
|
1679 |
+
"n_tokens": 458961,
|
1680 |
+
"n_chars": 1484970
|
1681 |
+
},
|
1682 |
+
"orion_14b_chat.cc100-fr": {
|
1683 |
+
"vocab_size": 84608,
|
1684 |
+
"n_bytes": 1540504,
|
1685 |
+
"n_tokens": 564107,
|
1686 |
+
"n_chars": 1484970
|
1687 |
+
},
|
1688 |
+
"phi_1.cc100-fr": {
|
1689 |
+
"vocab_size": 50295,
|
1690 |
+
"n_bytes": 1540504,
|
1691 |
+
"n_tokens": 521776,
|
1692 |
+
"n_chars": 1484970
|
1693 |
+
},
|
1694 |
+
"phi_2.cc100-fr": {
|
1695 |
+
"vocab_size": 50295,
|
1696 |
+
"n_bytes": 1540504,
|
1697 |
+
"n_tokens": 521776,
|
1698 |
+
"n_chars": 1484970
|
1699 |
+
},
|
1700 |
+
"phi_3_mini.cc100-fr": {
|
1701 |
+
"vocab_size": 32011,
|
1702 |
+
"n_bytes": 1540504,
|
1703 |
+
"n_tokens": 457243,
|
1704 |
+
"n_chars": 1484970
|
1705 |
+
},
|
1706 |
+
"pko_t5_large.cc100-fr": {
|
1707 |
+
"vocab_size": 50358,
|
1708 |
+
"n_bytes": 1540504,
|
1709 |
+
"n_tokens": 1044665,
|
1710 |
+
"n_chars": 1484970
|
1711 |
+
},
|
1712 |
+
"prompt_clue.cc100-fr": {
|
1713 |
+
"vocab_size": 32128,
|
1714 |
+
"n_bytes": 1540504,
|
1715 |
+
"n_tokens": 822012,
|
1716 |
+
"n_chars": 1484970
|
1717 |
+
},
|
1718 |
+
"qwen1_5_14b_chat.cc100-fr": {
|
1719 |
+
"vocab_size": 151646,
|
1720 |
+
"n_bytes": 1540504,
|
1721 |
+
"n_tokens": 413637,
|
1722 |
+
"n_chars": 1484970
|
1723 |
+
},
|
1724 |
+
"qwen_1_8b_chat.cc100-fr": {
|
1725 |
+
"vocab_size": 151851,
|
1726 |
+
"n_bytes": 1540504,
|
1727 |
+
"n_tokens": 413637,
|
1728 |
+
"n_chars": 1484970
|
1729 |
+
},
|
1730 |
+
"qwen_72b_chat.cc100-fr": {
|
1731 |
+
"vocab_size": 151851,
|
1732 |
+
"n_bytes": 1540504,
|
1733 |
+
"n_tokens": 413637,
|
1734 |
+
"n_chars": 1484970
|
1735 |
+
},
|
1736 |
+
"qwen_7b_chat.cc100-fr": {
|
1737 |
+
"vocab_size": 151851,
|
1738 |
+
"n_bytes": 1540504,
|
1739 |
+
"n_tokens": 413637,
|
1740 |
+
"n_chars": 1484970
|
1741 |
+
},
|
1742 |
+
"roberta_chinese_clue.cc100-fr": {
|
1743 |
+
"vocab_size": 8021,
|
1744 |
+
"n_bytes": 1540504,
|
1745 |
+
"n_tokens": 787363,
|
1746 |
+
"n_chars": 1484970
|
1747 |
+
},
|
1748 |
+
"skywork_13b_base.cc100-fr": {
|
1749 |
+
"vocab_size": 65519,
|
1750 |
+
"n_bytes": 1540504,
|
1751 |
+
"n_tokens": 457233,
|
1752 |
+
"n_chars": 1484970
|
1753 |
+
},
|
1754 |
+
"skywork_13b_math.cc100-fr": {
|
1755 |
+
"vocab_size": 65519,
|
1756 |
+
"n_bytes": 1540504,
|
1757 |
+
"n_tokens": 457233,
|
1758 |
+
"n_chars": 1484970
|
1759 |
+
},
|
1760 |
+
"solar_10_7b.cc100-fr": {
|
1761 |
+
"vocab_size": 32000,
|
1762 |
+
"n_bytes": 1540504,
|
1763 |
+
"n_tokens": 476666,
|
1764 |
+
"n_chars": 1484970
|
1765 |
+
},
|
1766 |
+
"starchat_alpha.cc100-fr": {
|
1767 |
+
"vocab_size": 49156,
|
1768 |
+
"n_bytes": 1540504,
|
1769 |
+
"n_tokens": 509958,
|
1770 |
+
"n_chars": 1484970
|
1771 |
+
},
|
1772 |
+
"switch_c_2048.cc100-fr": {
|
1773 |
+
"vocab_size": 32100,
|
1774 |
+
"n_bytes": 1540504,
|
1775 |
+
"n_tokens": 476133,
|
1776 |
+
"n_chars": 1484970
|
1777 |
+
},
|
1778 |
+
"t5_base.cc100-fr": {
|
1779 |
+
"vocab_size": 32100,
|
1780 |
+
"n_bytes": 1540504,
|
1781 |
+
"n_tokens": 476133,
|
1782 |
+
"n_chars": 1484970
|
1783 |
+
},
|
1784 |
+
"t5_large.cc100-fr": {
|
1785 |
+
"vocab_size": 32100,
|
1786 |
+
"n_bytes": 1540504,
|
1787 |
+
"n_tokens": 476133,
|
1788 |
+
"n_chars": 1484970
|
1789 |
+
},
|
1790 |
+
"t5_small.cc100-fr": {
|
1791 |
+
"vocab_size": 32100,
|
1792 |
+
"n_bytes": 1540504,
|
1793 |
+
"n_tokens": 476133,
|
1794 |
+
"n_chars": 1484970
|
1795 |
+
},
|
1796 |
+
"text_davinci_003.cc100-fr": {
|
1797 |
+
"vocab_size": 50281,
|
1798 |
+
"n_bytes": 1540504,
|
1799 |
+
"n_tokens": 521776,
|
1800 |
+
"n_chars": 1484970
|
1801 |
+
},
|
1802 |
+
"tigerbot_13b_chat_v2.cc100-fr": {
|
1803 |
+
"vocab_size": 60515,
|
1804 |
+
"n_bytes": 1540504,
|
1805 |
+
"n_tokens": 447372,
|
1806 |
+
"n_chars": 1484970
|
1807 |
+
},
|
1808 |
+
"tigerbot_70b_chat_v4_4k.cc100-fr": {
|
1809 |
+
"vocab_size": 65110,
|
1810 |
+
"n_bytes": 1540504,
|
1811 |
+
"n_tokens": 448567,
|
1812 |
+
"n_chars": 1484970
|
1813 |
+
},
|
1814 |
+
"wizardcoder_15b_v1.cc100-fr": {
|
1815 |
+
"vocab_size": 49153,
|
1816 |
+
"n_bytes": 1540504,
|
1817 |
+
"n_tokens": 509958,
|
1818 |
+
"n_chars": 1484970
|
1819 |
+
},
|
1820 |
+
"wizardcoder_python_7b_v1.cc100-fr": {
|
1821 |
+
"vocab_size": 32001,
|
1822 |
+
"n_bytes": 1540504,
|
1823 |
+
"n_tokens": 457243,
|
1824 |
+
"n_chars": 1484970
|
1825 |
+
},
|
1826 |
+
"wizardlm_7b_v1.cc100-fr": {
|
1827 |
+
"vocab_size": 32001,
|
1828 |
+
"n_bytes": 1540504,
|
1829 |
+
"n_tokens": 457243,
|
1830 |
+
"n_chars": 1484970
|
1831 |
+
},
|
1832 |
+
"wizardmath_70b_v1.cc100-fr": {
|
1833 |
+
"vocab_size": 32002,
|
1834 |
+
"n_bytes": 1540504,
|
1835 |
+
"n_tokens": 457243,
|
1836 |
+
"n_chars": 1484970
|
1837 |
+
},
|
1838 |
+
"xlm_roberta.cc100-fr": {
|
1839 |
+
"vocab_size": 250002,
|
1840 |
+
"n_bytes": 1540504,
|
1841 |
+
"n_tokens": 405041,
|
1842 |
+
"n_chars": 1484970
|
1843 |
+
},
|
1844 |
+
"yi_34b.cc100-fr": {
|
1845 |
+
"vocab_size": 64000,
|
1846 |
+
"n_bytes": 1540504,
|
1847 |
+
"n_tokens": 533106,
|
1848 |
+
"n_chars": 1484970
|
1849 |
+
},
|
1850 |
+
"yi_6b.cc100-fr": {
|
1851 |
+
"vocab_size": 64000,
|
1852 |
+
"n_bytes": 1540504,
|
1853 |
+
"n_tokens": 533106,
|
1854 |
+
"n_chars": 1484970
|
1855 |
+
},
|
1856 |
+
"yi_vl34b.cc100-fr": {
|
1857 |
+
"vocab_size": 64000,
|
1858 |
+
"n_bytes": 1540504,
|
1859 |
+
"n_tokens": 532288,
|
1860 |
+
"n_chars": 1484970
|
1861 |
+
},
|
1862 |
+
"zephyr_7b_beta.cc100-fr": {
|
1863 |
+
"vocab_size": 32000,
|
1864 |
+
"n_bytes": 1540504,
|
1865 |
+
"n_tokens": 476666,
|
1866 |
+
"n_chars": 1484970
|
1867 |
+
}
|
1868 |
+
}
|
stats/compress_rate/amber.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 1124813, "n_tokens": 294627, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/amber.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 2633047, "n_tokens": 1330093, "n_chars": 927311}
|
|
|
|
stats/compress_rate/aya_101.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 250100, "n_bytes": 1124813, "n_tokens": 317881, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/aya_101.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 250100, "n_bytes": 2633047, "n_tokens": 631182, "n_chars": 927311}
|
|
|
|
stats/compress_rate/baichuan.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64000, "n_bytes": 1124813, "n_tokens": 280108, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/baichuan.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64000, "n_bytes": 2633047, "n_tokens": 626117, "n_chars": 927311}
|
|
|
|
stats/compress_rate/baichuan2.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 125696, "n_bytes": 1124813, "n_tokens": 269011, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/baichuan2.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 125696, "n_bytes": 2633047, "n_tokens": 541464, "n_chars": 927311}
|
|
|
|
stats/compress_rate/bert_base_cased.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 28996, "n_bytes": 1124813, "n_tokens": 288022, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/bert_base_cased.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 28996, "n_bytes": 2633047, "n_tokens": 899709, "n_chars": 927311}
|
|
|
|
stats/compress_rate/bert_base_chinese.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 21128, "n_bytes": 1124813, "n_tokens": 377068, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/bert_base_chinese.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 21128, "n_bytes": 2633047, "n_tokens": 896599, "n_chars": 927311}
|
|
|
|
stats/compress_rate/bert_base_uncased.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 30522, "n_bytes": 1124813, "n_tokens": 280575, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/bert_base_uncased.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 30522, "n_bytes": 2633047, "n_tokens": 898554, "n_chars": 927311}
|
|
|
|
stats/compress_rate/bloom.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 250680, "n_bytes": 1124813, "n_tokens": 257405, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/bloom.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 250680, "n_bytes": 2633047, "n_tokens": 573008, "n_chars": 927311}
|
|
|
|
stats/compress_rate/byt5_small.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 256, "n_bytes": 1124813, "n_tokens": 1134813, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/byt5_small.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 256, "n_bytes": 2633047, "n_tokens": 2643047, "n_chars": 927311}
|
|
|
|
stats/compress_rate/character_glm_6b.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64794, "n_bytes": 1124813, "n_tokens": 289347, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/character_glm_6b.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64794, "n_bytes": 2633047, "n_tokens": 583646, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chatglm2_6b.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64794, "n_bytes": 1124813, "n_tokens": 289329, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chatglm2_6b.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64794, "n_bytes": 2633047, "n_tokens": 583646, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chatglm3_6b.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64798, "n_bytes": 1124813, "n_tokens": 289347, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chatglm3_6b.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 64798, "n_bytes": 2633047, "n_tokens": 583646, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chatglm_6b.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 150344, "n_bytes": 1124813, "n_tokens": 284761, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chatglm_6b.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 150344, "n_bytes": 2633047, "n_tokens": 527384, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chatyuan_large_v2.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32128, "n_bytes": 1124813, "n_tokens": 536033, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chatyuan_large_v2.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32128, "n_bytes": 2633047, "n_tokens": 564905, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chinese_llama.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 49953, "n_bytes": 1124813, "n_tokens": 291514, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chinese_llama.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 49953, "n_bytes": 2633047, "n_tokens": 623219, "n_chars": 927311}
|
|
|
|
stats/compress_rate/chinese_llama2.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 55296, "n_bytes": 1124813, "n_tokens": 294627, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/chinese_llama2.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 55296, "n_bytes": 2633047, "n_tokens": 625766, "n_chars": 927311}
|
|
|
|
stats/compress_rate/code_davinci_002.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 50281, "n_bytes": 1124813, "n_tokens": 258403, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/code_davinci_002.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 50281, "n_bytes": 2633047, "n_tokens": 1876809, "n_chars": 927311}
|
|
|
|
stats/compress_rate/crystal_coder.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 1124813, "n_tokens": 284627, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/crystal_coder.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 2633047, "n_tokens": 1320093, "n_chars": 927311}
|
|
|
|
stats/compress_rate/dbrx_instruct.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 100277, "n_bytes": 1124813, "n_tokens": 254985, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/dbrx_instruct.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 100277, "n_bytes": 2633047, "n_tokens": 1084939, "n_chars": 927311}
|
|
|
|
stats/compress_rate/deepseek_coder_33b_instruct.en.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 1124813, "n_tokens": 287408, "n_chars": 1121360}
|
|
|
|
stats/compress_rate/deepseek_coder_33b_instruct.zh-Hans.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"vocab_size": 32000, "n_bytes": 2633047, "n_tokens": 720577, "n_chars": 927311}
|
|
|
|