xu-song's picture
update
751936e
raw
history blame
11.5 kB
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from tokenizers import Tokenizer
from transformers import GPT2Tokenizer, GPT2TokenizerFast
import numpy as np
import sentencepiece as spm
from typing import List, Union
from .gpt2_tokenization import GPT2Tokenizer
def build_tokenizer(args):
"""Initialize tokenizer."""
if args.rank == 0:
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
# Select and instantiate the tokenizer.
if args.tokenizer_type.lower() == "GPT2BPETokenizer".lower():
assert args.vocab_file is not None
assert args.merge_file is not None
tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
elif args.tokenizer_type.lower() == "SPMTokenizer".lower():
assert args.vocab_file is not None
tokenizer = SentencePieceTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "HFTokenizer".lower():
assert args.vocab_file is not None
tokenizer = HFTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "HFGPT2Tokenizer".lower():
if args.vocab_file is None:
print(
"WARNING: No vocab file found, loading Huggingface's pretrained GPT2Tokenizer"
)
tokenizer = HFGPT2Tokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "CharLevelTokenizer".lower():
tokenizer = CharLevelTokenizer(vocab_size=512)
elif args.tokenizer_type.lower() == "TiktokenTokenizer".lower():
assert args.vocab_file is not None
tokenizer = TiktokenTokenizer(args.vocab_file)
else:
raise NotImplementedError(
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
)
# Add vocab size.
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
return tokenizer
def _vocab_size_with_padding(orig_vocab_size, args):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
while (after % multiple) != 0:
after += 1
if args.rank == 0:
print(
" > padded vocab (size: {}) with {} dummy tokens "
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
flush=True,
)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError(
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
)
@property
def cls(self):
raise NotImplementedError(
"CLS is not provided for {} " "tokenizer".format(self.name)
)
@property
def sep(self):
raise NotImplementedError(
"SEP is not provided for {} " "tokenizer".format(self.name)
)
@property
def pad(self):
raise NotImplementedError(
"PAD is not provided for {} " "tokenizer".format(self.name)
)
@property
def eod(self):
raise NotImplementedError(
"EOD is not provided for {} " "tokenizer".format(self.name)
)
@property
def mask(self):
raise NotImplementedError(
"MASK is not provided for {} " "tokenizer".format(self.name)
)
class _GPT2BPETokenizer(AbstractTokenizer):
"""Original GPT2 BPE tokenizer."""
def __init__(self, vocab_file, merge_file):
name = "GPT2 BPE"
super().__init__(name)
self.tokenizer = GPT2Tokenizer(
vocab_file, merge_file, errors="replace", special_tokens=[], max_len=None
)
self.eod_id = self.tokenizer.encoder["<|endoftext|>"]
@property
def vocab_size(self):
return len(self.tokenizer.encoder)
@property
def vocab(self):
return self.tokenizer.encoder
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class SentencePieceTokenizer(AbstractTokenizer):
"""Designed to Integrate SP's Tokenizer."""
def __init__(self, vocab_file):
name = "SPM"
super().__init__(name)
self.tokenizer = spm.SentencePieceProcessor(model_file=vocab_file)
self.eod_id = self.tokenizer.piece_to_id("<|endoftext|>")
@property
def vocab_size(self):
return self.tokenizer.get_piece_size()
@property
def vocab(self):
return {
self.tokenizer.id_to_piece(idx): idx
for idx in range(self.tokenizer.get_piece_size())
}
@property
def inv_vocab(self):
return {
idx: self.tokenizer.id_to_piece(idx)
for idx in range(self.tokenizer.get_piece_size())
}
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class HFTokenizer(AbstractTokenizer):
"""Designed to Integrate HF's Tokenizer library."""
def __init__(self, vocab_file):
name = "HFTokenizer"
super().__init__(name)
self.tokenizer = Tokenizer.from_file(vocab_file)
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text).ids
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class HFGPT2Tokenizer(AbstractTokenizer):
"""Designed to Integrate the pretrained OpenAI GPT2 Tokenizers from HF"""
def __init__(self, vocab_file=None, fast=True):
name = "HFGPT2Tokenizer"
if fast:
name += "Fast"
super().__init__(name)
if vocab_file is None:
vocab_file = "gpt2"
if fast:
self.tokenizer = GPT2TokenizerFast.from_pretrained(vocab_file)
else:
self.tokenizer = GPT2Tokenizer.from_pretrained(vocab_file)
self.tokenizer.add_special_tokens({"pad_token": "<|padding|>"})
self.eod_id = self.tokenizer.eos_token_id
self.pad_id = self.tokenizer.pad_token_id
@property
def vocab_size(self):
return len(self.tokenizer)
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer._tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text)
def tokenize_batch(self, text_batch: Union[List[str], str]):
if isinstance(text_batch, str):
text_batch = [text_batch]
return [self.tokenize(t) for t in text_batch]
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class CharLevelTokenizer(AbstractTokenizer):
"""Character Level Tokenizer"""
def __init__(self, vocab_size):
name = "CharLevelTokenizer"
super().__init__(name)
self._vocab_size = vocab_size
self.eod_id = 0
self.pad_id = 1
def clamp(self, n):
return max(32, min(n, self.vocab_size))
@property
def vocab_size(self):
return self._vocab_size
@property
def vocab(self):
raise NotImplementedError
@property
def inv_vocab(self):
raise NotImplementedError
def decode_token(self, token: int):
return str(chr(self.clamp(token)))
def tokenize(self, text: str):
return list(np.fromstring(text, dtype=np.uint8))
def tokenize_batch(self, text_batch: Union[List[str], str]):
if isinstance(text_batch, list):
return [self.tokenize(s) for s in text_batch]
else:
return self.tokenize(text_batch)
def detokenize(self, token_ids):
return "".join(list(map(self.decode_token, token_ids)))
@property
def eod(self):
return self.eod_id
class TiktokenTokenizer(AbstractTokenizer):
"""Tokenizer from OpenAI's tiktoken implementation"""
def __init__(self, vocab_file):
try:
import tiktoken
except ModuleNotFoundError:
print("Please install tiktoken: (https://github.com/openai/tiktoken)")
raise Exception
name = "TiktokenTokenizer"
super().__init__(name)
self.tokenizer = tiktoken.get_encoding(vocab_file)
self.eod_id = self.tokenizer.eot_token
self.pad_id = None
@property
def vocab_size(self):
return self.tokenizer.n_vocab
@property
def vocab(self):
raise NotImplementedError(
"TiktokenTokenizer does not implement vocabulary access."
)
@property
def inv_vocab(self):
raise NotImplementedError(
"TiktokenTokenizer does not implement vocabulary access. \
To get the idx-th token in vocabulary, use tokenizer.decode([idx]) ."
)
def tokenize(self, text: str):
return self.tokenizer.encode(text) # , allowed_special="all")
def tokenize_batch(self, text_batch: List[str]):
return self.tokenizer.encode_batch(text_batch, allowed_special="all")
def detokenize(self, token_ids):
return self.tokenizer.decode(tokens=token_ids, errors="strict")
@property
def eod(self):
return self.eod_id
@property
def pad(self):
raise NotImplementedError