Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for OpenAI GPT.""" | |
from __future__ import (absolute_import, division, print_function, | |
unicode_literals) | |
import sys | |
import json | |
import logging | |
import os | |
import regex as re | |
from io import open | |
try: | |
from functools import lru_cache | |
except ImportError: | |
# Just a dummy decorator to get the checks to run on python2 | |
# because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now. | |
def lru_cache(): | |
return lambda func: func | |
logger = logging.getLogger(__name__) | |
PRETRAINED_VOCAB_ARCHIVE_MAP = { | |
'gpt2': ".pytorch_pretrained_bert/gpt2-vocab.json", | |
"roberta": ".pytorch_pretrained_bert/roberta-vocab.json" | |
} | |
PRETRAINED_MERGES_ARCHIVE_MAP = { | |
'gpt2': ".pytorch_pretrained_bert/gpt2-merges.txt", | |
"roberta": ".pytorch_pretrained_bert/roberta-merges.txt" | |
} | |
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { | |
'gpt2': 1024, | |
} | |
VOCAB_NAME = 'vocab.json' | |
MERGES_NAME = 'merges.txt' | |
SPECIAL_TOKENS_NAME = 'special_tokens.txt' | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
_chr = unichr if sys.version_info[0] == 2 else chr | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [_chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class GPT2Tokenizer(object): | |
""" | |
GPT-2 BPE tokenizer. Peculiarities: | |
- Byte-level BPE | |
""" | |
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): | |
""" | |
Instantiate a PreTrainedBertModel from a pre-trained model file. | |
Download and cache the pre-trained model file if needed. | |
""" | |
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: | |
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] | |
merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path] | |
special_tokens_file = None | |
else: | |
vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME) | |
merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME) | |
special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME) | |
if not os.path.exists(special_tokens_file): | |
special_tokens_file = None | |
else: | |
logger.info("loading special tokens file {}".format(special_tokens_file)) | |
# redirect to the cache, if necessary | |
# try: | |
# resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) | |
# resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir) | |
# except EnvironmentError: | |
# logger.error( | |
# "Model name '{}' was not found in model name list ({}). " | |
# "We assumed '{}' was a path or url but couldn't find files {} and {} " | |
# "at this path or url.".format( | |
# pretrained_model_name_or_path, | |
# ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), | |
# pretrained_model_name_or_path, | |
# vocab_file, merges_file)) | |
# return None | |
# if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file: | |
# logger.info("loading vocabulary file {}".format(vocab_file)) | |
# logger.info("loading merges file {}".format(merges_file)) | |
# else: | |
# logger.info("loading vocabulary file {} from cache at {}".format( | |
# vocab_file, resolved_vocab_file)) | |
# logger.info("loading merges file {} from cache at {}".format( | |
# merges_file, resolved_merges_file)) | |
resolved_vocab_file = vocab_file | |
resolved_merges_file = merges_file | |
logger.info("loading vocabulary file {}".format(vocab_file)) | |
logger.info("loading merges file {}".format(merges_file)) | |
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: | |
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer | |
# than the number of positional embeddings | |
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path] | |
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) | |
# Instantiate tokenizer. | |
if special_tokens_file and 'special_tokens' not in kwargs: | |
special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1] | |
else: | |
special_tokens = kwargs.pop('special_tokens', []) | |
tokenizer = cls(resolved_vocab_file, resolved_merges_file, special_tokens=special_tokens, *inputs, **kwargs) | |
return tokenizer | |
def __init__(self, vocab_file, merges_file, errors='replace', special_tokens=None, max_len=None): | |
self.max_len = max_len if max_len is not None else int(1e12) | |
self.encoder = json.load(open(vocab_file)) | |
self.decoder = {v:k for k,v in self.encoder.items()} | |
self.errors = errors # how to handle errors in decoding | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} | |
bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1] | |
bpe_merges = [tuple(merge.split()) for merge in bpe_data] | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions | |
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") | |
self.special_tokens = {} | |
self.special_tokens_decoder = {} | |
self.set_special_tokens(special_tokens) | |
def __len__(self): | |
return len(self.encoder) + len(self.special_tokens) | |
def set_special_tokens(self, special_tokens): | |
""" Add a list of additional tokens to the encoder. | |
The additional tokens are indexed starting from the last index of the | |
current vocabulary in the order of the `special_tokens` list. | |
""" | |
if not special_tokens: | |
self.special_tokens = {} | |
self.special_tokens_decoder = {} | |
return | |
self.special_tokens = dict((tok, len(self.encoder) + i) for i, tok in enumerate(special_tokens)) | |
self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()} | |
logger.info("Special tokens {}".format(self.special_tokens)) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word)-1 and word[i+1] == second: | |
new_word.append(first+second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def tokenize(self, text): | |
""" Tokenize a string. """ | |
bpe_tokens = [] | |
for token in re.findall(self.pat, text): | |
if sys.version_info[0] == 2: | |
token = ''.join(self.byte_encoder[ord(b)] for b in token) | |
else: | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def convert_tokens_to_ids(self, tokens): | |
""" Converts a sequence of tokens into ids using the vocab. """ | |
ids = [] | |
if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)): | |
if tokens in self.special_tokens: | |
return self.special_tokens[tokens] | |
else: | |
return self.encoder.get(tokens, 0) | |
for token in tokens: | |
if token in self.special_tokens: | |
ids.append(self.special_tokens[token]) | |
else: | |
ids.append(self.encoder.get(token, 0)) | |
if len(ids) > self.max_len: | |
logger.warning( | |
"Token indices sequence length is longer than the specified maximum " | |
" sequence length for this OpenAI GPT model ({} > {}). Running this" | |
" sequence through the model will result in indexing errors".format(len(ids), self.max_len) | |
) | |
return ids | |
def convert_ids_to_tokens(self, ids, skip_special_tokens=False): | |
"""Converts a sequence of ids in BPE tokens using the vocab.""" | |
tokens = [] | |
for i in ids: | |
if i in self.special_tokens_decoder: | |
if not skip_special_tokens: | |
tokens.append(self.special_tokens_decoder[i]) | |
else: | |
tokens.append(self.decoder[i]) | |
return tokens | |
def encode(self, text): | |
return self.convert_tokens_to_ids(self.tokenize(text)) | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) | |
return text | |
def save_vocabulary(self, vocab_path): | |
"""Save the tokenizer vocabulary and merge files to a directory.""" | |
if not os.path.isdir(vocab_path): | |
logger.error("Vocabulary path ({}) should be a directory".format(vocab_path)) | |
return | |
vocab_file = os.path.join(vocab_path, VOCAB_NAME) | |
merge_file = os.path.join(vocab_path, MERGES_NAME) | |
special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME) | |
with open(vocab_file, 'w', encoding='utf-8') as f: | |
f.write(json.dumps(self.encoder, ensure_ascii=False)) | |
index = 0 | |
with open(merge_file, "w", encoding="utf-8") as writer: | |
writer.write(u'#version: 0.2\n') | |
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!".format(merge_file)) | |
index = token_index | |
writer.write(' '.join(bpe_tokens) + u'\n') | |
index += 1 | |
index = len(self.encoder) | |
with open(special_tokens_file, 'w', encoding='utf-8') as writer: | |
for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]): | |
if index != token_index: | |
logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive." | |
" Please check that the tokenizer is not corrupted!".format(special_tokens_file)) | |
index = token_index | |
writer.write(token + u'\n') | |
index += 1 | |
return vocab_file, merge_file, special_tokens_file |