xu-song's picture
update
751936e
raw
history blame
51.9 kB
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for using and training tokenizers (char, wordpiece, sentencepiece)"""
from collections import namedtuple
import random
import os
import csv
import torch
import itertools
import nltk
from nltk import tokenize as nltk_tokenize
import sentencepiece as spm
from .wordpiece import BertTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
from .tokenization_gpt2 import GPT2Tokenizer
from . import sp_tokenizer
from .utils import print_rank_0
import regex as re
def make_tokenizer(tokenizer_type, corpus, model_path=None, vocab_size=None, model_type=None, pad_token=0,
character_coverage=1.0, command_tokens=None, type_tokens=None, fix_command_token=False, **kwargs):
"""
Helper function to instantiate a tokenizer given common combinations of options.
"""
tokenizer_class = tokenizer_type
if isinstance(tokenizer_class, str):
tokenizer_class = eval(tokenizer_class)
if tokenizer_class is BertWordPieceTokenizer:
return BertWordPieceTokenizer(model_type, **kwargs)
elif tokenizer_class is GPT2BPETokenizer:
if model_type is None:
model_type = 'gpt2'
return GPT2BPETokenizer(model_type, **kwargs)
elif tokenizer_class is ChineseSPTokenizer:
return ChineseSPTokenizer(fix_command_token=fix_command_token, **kwargs)
text_tokenizer = tokenizer_class(corpus=corpus, vocab_size=vocab_size, model_path=model_path, model_type=model_type,
pad_token=pad_token, character_coverage=character_coverage)
return Tokenizer(text_tokenizer, command_tokens, type_tokens)
class Tokenization(object):
"""
Tokenization object to hold tokenization, (processed text),and original
text. Can hold tokenization as Ids or tokens.
It also holds command tokens (pad, unk, etc.) for the tokenization.
This allows functions to pad/operate on tokenizations without having
access to the full tokenizer, just the tokenization.
Several standard array operations are implemented (insert, append, extend).
"""
def __init__(self, tokenization, text=None, original_text=None, command_tokens=None, asIds=True):
self.tokenization = tokenization
self.text = text
if self.text is None:
self.text = self.tokenization
self.original_text = original_text
if self.original_text is None:
self.original_text = self.text
self.command_tokens = command_tokens
self.asIds = asIds
self.parse_command_tokens()
def set_command_tokens(self, command_tokens):
self.command_tokens = command_tokens
return self.parse_command_tokens()
def parse_command_tokens(self):
if self.command_tokens is None:
return
for command_token in self.command_tokens:
if self.asIds:
setattr(self, command_token.name, command_token.Id)
else:
setattr(self, command_token.name, command_token.token)
def __getitem__(self, index):
return self.tokenization[index]
def __len__(self):
return len(self.tokenization)
def insert(self, idx, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.insert(idx, other.Id)
if idx == 0:
self.text = other.token + self.text
self.original_text = other.token + self.original_text
elif idx == len(self.tokenization) - 1:
self.text += other.token
self.original_text += other.token
elif isinstance(other, Tokenization):
self.tokenization = self.tokenization[:idx] + other.tokenization + self.tokenization[idx:]
else:
self.tokenization = self.tokenization[:idx] + other.tokenization + self.tokenization[idx:]
def append(self, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.append(other.Id)
self.text += other.token
self.original_text += other.token
elif isinstance(other, Tokenization):
self.tokenization.extend(other.tokenization)
self.text += other.text
self.original_text += other.original_text
else:
self.tokenization.append(other)
return self
def extend(self, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.append(other.Id)
self.text += other.token
self.original_text += other.token
elif isinstance(other, list) and isinstance(other[0], (CommandToken, TypeToken)):
self.tokenization.extend([o.Id for o in other])
self.text += [o.token for o in other]
self.original_text += [o.token for o in other]
elif isinstance(other, Tokenization):
self.tokenization.extend(other.tokenization)
self.text += other.text
self.original_text += other.original_text
else:
self.tokenization.extend(other)
return self
"""define some default command tokens for the tokenizer to use"""
token_format = "<{0}>"
COMMAND_TUPLE = namedtuple('CommandToken', ('name', 'token', 'Id'))
def prep_command_tokens(tokenlist, token_format=token_format):
return [CommandToken(tok[0], token_format.format(tok[0]), tok[1]) for tok in tokenlist]
class CommandToken(object):
def __init__(self, name, token, Id, lstrip=False, rstrip=False):
self.name = name
self.token = token
self.Id = Id
self.lstrip = lstrip
self.rstrip = rstrip
def __str__(self):
return str(COMMAND_TUPLE(self.name, self.token, self.Id))
def __repr__(self):
return str(COMMAND_TUPLE(self.name, self.token, self.Id))
DEFAULT_COMMAND_TOKENS = [
('pad', 0),
('eos', 1),
('bos', 2),
('unk', 3),
('sep', 4),
('L2R', 5),
('ENC', 6),
('MASK', 7),
]
DEFAULT_COMMAND_TOKENS = prep_command_tokens(DEFAULT_COMMAND_TOKENS)
"""define some default type tokens for bert training"""
TYPE_TUPLE = namedtuple('TypeToken', ('name', 'token', 'Id'))
def prep_type_tokens(tokenlist, token_format=token_format):
return [TypeToken(tok[0], token_format.format(tok[0]), tok[1]) for tok in tokenlist]
class TypeToken(object):
def __init__(self, name, token, Id):
self.name = name
self.token = token
self.Id = Id
def __str__(self):
return str(TYPE_TUPLE(self.name, self.token, self.Id))
DEFAULT_TYPE_TOKENS = [
('function', 0),
('command', 1),
('str0', 2),
('str1', 3),
('str2', 4),
('embedding0', 5),
('embedding1', 6),
('embedding2', 7),
('arg0', 8),
('arg1', 9),
('arg2', 10),
]
DEFAULT_TYPE_TOKENS = prep_type_tokens(DEFAULT_TYPE_TOKENS)
class Tokenizer(object):
"""
Tokenizer object that handles text tokenization, command tokens, and type tokens.
Command tokens and text tokens are stored together in one mapping of size
`len(text_tokenizer)+len(command_tokens)`. Command tokens are stored as first
`len(command_tokens)` tokens. Token idx is stored at `idx+len(command_tokens)`.
Token types are stored in a separate mapping of size `len(type_tokens)`.
"""
def __init__(self, text_tokenizer, command_tokens=None, type_tokens=None):
# set text tokenizer
self.text_tokenizer = text_tokenizer
if not hasattr(self, 'num_text_tokens'):
self.num_text_tokens = len(self.text_tokenizer)
# set command tokens
if command_tokens is None:
command_tokens = DEFAULT_COMMAND_TOKENS
self._command_tokens = command_tokens
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
if not hasattr(self, 'num_command_tokens'):
self.num_command_tokens = len(self._command_tokens)
if not hasattr(self, 'num_tokens'):
self.num_tokens = self.num_command_tokens + self.num_text_tokens
# set type tokens
if type_tokens is None:
type_tokens = DEFAULT_TYPE_TOKENS
self.type_tokens = type_tokens
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
if not hasattr(self, 'num_type_tokens'):
self.num_type_tokens = len(self.type_tokens)
# parse tokens and vocabs from tokenizer
self._tokens = list(self.command_token_map.keys()) + list(self.text_tokenizer.tokens)
self._vocab = {t: Id for Id, t in self.command_id_map.items()}
self._vocab.update({t: Id + self.num_command_tokens for t, Id in self.text_tokenizer.vocab.items()})
self._text_tokens = list(self.text_tokenizer.tokens)
self._text_token_vocab = {t: Id + self.num_command_tokens for t, Id in self.text_tokenizer.vocab.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def __call__(self, text, process_fn=None):
"""run preprocessing and encode text as Ids"""
return self.EncodeAsIds(text, process_fn=process_fn)
def __len__(self):
"""total number of tokens"""
return self.num_tokens
def get_command(self, name):
"""get command token corresponding to `name`"""
return self.command_name_map[name]
def get_type(self, name):
"""get type token corresponding to `name`"""
return self.type_name_map[name]
@property
def tokens(self):
"""list (or iterable) of all tokens for tokenizer"""
return self._tokens
@property
def vocab(self):
"""dictionary mapping tokens to ids for tokenizer"""
return self._vocab
@property
def token_types(self):
"""list (or iterable) of all token types for tokenizer"""
return self._token_types
@property
def token_type_vocab(self):
"""dictionary mapping token types to ids for tokenizer"""
return self._token_type_vocab
@property
def command_tokens(self):
"""list (or iterable) of all command tokens for tokenizer"""
return self._command_token_tokens
@property
def command_token_vocab(self):
"""dictionary mapping command tokens to ids for tokenizer"""
return self._command_token_vocab
@property
def text_tokens(self):
"""list (or iterable) of text tokens for text tokenizer"""
return self._text_tokens
@property
def text_token_vocab(self):
"""dictionary mapping text tokens to ids for text tokenizer"""
return self._text_token_vocab
def EncodeAsIds(self, text, process_fn=None):
"""
encode text using text tokenizer and shift Id values for command tokens
"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
def split_on_token(tok_extended: CommandToken, text):
result = []
tok = tok_extended.token
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# CommandToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# Strip white spaces on the right
if tok_extended.rstrip and i > 0:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
sub_text = sub_text.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and i < len(split_text) - 1:
sub_text = sub_text.rstrip() # Opposite here
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self.text_tokenizer.encode(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self._command_token_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._encode(token) if token not in self._command_token_tokens else [
self.command_token_map[token].Id] for token in tokenized_text
)
)
)
no_split_tokens = self._command_tokens
Ids = split_on_tokens(no_split_tokens, processed_text)
tokenization = Tokenization(Ids, processed_text, text)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def _encode(self, text):
raise NotImplementedError
def EncodeAsTokens(self, text, process_fn=None):
"""
encode text as tokens using text tokenizer
"""
tokenization = self.text_tokenizer.EncodeAsTokens(text, process_fn=process_fn)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def IdToToken(self, Id, type_token=False):
"""convert Id to token accounting for command and type tokens"""
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id < self.num_command_tokens:
return self.command_id_map[Id].token
return self.text_tokenizer.IdToToken(Id - self.num_command_tokens)
def TokenToId(self, token, type_token=False):
"""convert token to Id accounting for command and type tokens"""
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
if token in self.command_token_map:
return self.command_token_map[token].Id
return self.text_tokenizer.TokenToId(token) + self.num_command_tokens
def DecodeIds(self, Ids, type_token=False):
"""
convert Ids to tokens accounting for command and type tokens, tokens
are joined and returned as a string.
"""
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
rtn_strs = []
current_str = []
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
for Id in Ids:
if isinstance(Id, CommandToken):
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
current_str = []
rtn_strs.append(Id.token)
elif Id < self.num_command_tokens:
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
current_str = []
rtn_strs.append(self.command_id_map[Id].token)
else:
current_str.append(Id - self.num_command_tokens)
if current_str != []:
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
return ' '.join(rtn_strs)
def DecodeTokens(self, Tokens, type_token=False):
"""
convert tokens to a string accounting for command and type tokens.
"""
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
rtn_strs = []
current_str = []
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
for t in Tokens:
if isinstance(t, CommandToken):
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
current_str = []
rtn_strs.append(t.token)
elif t in self.command_token_map:
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
current_str = []
rtn_strs.append(t)
else:
current_str.append(t)
if current_str != []:
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
return ' '.join(rtn_strs)
class TextTokenizer(object):
"""
Interface for text tokenizer
"""
def __init__(self):
if not hasattr(self, 'num_text_tokens'):
self.num_text_tokens = 0
if not hasattr(self, 'num_tokens'):
self.num_tokens = self.num_text_tokens
def __call__(self, text, process_fn=None):
return self.EncodeAsIds(text, process_fn)
def __len__(self):
return self.num_text_tokens
@property
def tokens(self):
"""list (or iterable) of text tokens for text tokenizer"""
raise NotImplementedError('TextTokenizer tokens property not implemented')
@property
def vocab(self):
"""dictionary mapping tokens to ids"""
raise NotImplementedError('TextTokenizer vocab property not implemented')
@staticmethod
def exists(model_path):
"""check if the filepath for a text tokenizer exists"""
raise NotImplementedError('TextTokenizer exists method not implemented')
def Train(self, corpus):
"""train a tokenizer on a data corpus and save model for future use"""
raise NotImplementedError('TextTokenizer Train not implemented')
def EncodeAsIds(self, text, process_fn=None):
"""
Preprocess text and encode as ids. Return a tokenization object with
original text, processed text, and id tokenization.
"""
raise NotImplementedError('TextTokenizer EncodeAsIds not implemented')
def EncodeAsTokens(self, text, process_fn=None):
"""
Preprocess text and encode as tokens. Return a tokenization object with
original text, processed text, and token tokenization.
"""
raise NotImplementedError('TextTokenizer EncodeAsTokens not implemented')
def IdToToken(self, Id):
"""Convert an Id to Token. Reverse lookup of self.vocab"""
raise NotImplementedError('TextTokenizer IdToToken not implemented')
def TokenToId(self, token):
"""Convert a Token to Id. Lookup of self.vocab"""
raise NotImplementedError('TextTokenizer TokenToId not implemented')
def DecodeIds(self, Ids):
"""Convert a list or tokenization object of Ids to a text string"""
raise NotImplementedError('TextTokenizer DecodeIds not implemented')
def DecodeTokens(self, Tokens):
"""Convert a list or tokenization object of tokens to a text string"""
raise NotImplementedError('TextTokenizer DecodeTokens not implemented')
class CharacterLevelTokenizer(TextTokenizer):
"""
Text tokenizer for ASCII-256 Character Level Tokenization.
"""
def __init__(self, **kwargs):
self.num_text_tokens = 256
super(CharacterLevelTokenizer, self).__init__()
self._tokens = [self.IdToToken(Id) for Id in range(self.num_text_tokens)]
self._vocab = {t: i for i, t in enumerate(self._tokens)}
def __len__(self):
return 256
@staticmethod
def exists(model_path):
return True
def Train(self, corpus):
pass
@property
def tokens(self):
return self._tokens
@property
def vocab(self):
return self._vocab
def EncodeAsIds(self, text, process_fn=None):
"""convert text to ascii 256 Ids"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
processed_text = str(processed_text)
tokens = [self.TokenToId(c) for c in processed_text]
return Tokenization(tokens, processed_text, text)
def EncodeAsTokens(self, text, process_fn=None):
"""convert text to ascii 256 characters"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
processed_text = str(processed_text)
tokens = [c for c in processed_text]
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id):
"""ascii index to character"""
return chr(Id)
def TokenToId(self, token):
"""ascii character to index"""
return ord(token)
def DecodeIds(self, Ids):
"""converts ascii ids to tokens before joining them into text"""
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return ''.join([self.IdToToken(tok) for tok in Ids])
def DecodeTokens(self, Tokens):
"""just concatenates ascii tokens into text"""
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return ''.join(Tokens)
MAX_SENTENCEPIECE_SENTENCES = 100000000
def get_corpus_freq(dataset, filepath, filetype='tsv'):
"""
Take corpus, split it into sentences, and extract word frequencies.
Write frequencies to `filepath` as a tsv. Only write the first
MAX_SENTENCEPIECE_SENTENCES most common words to the file.
"""
nltk.download('punkt', download_dir="./nltk")
if filetype == 'tsv':
delimiter = '\t'
else:
delimiter = ','
print("compute corpus frequency\n", flush=True)
total_sentence_count = 0
maxlen = 0
freqs = {}
for entry in dataset:
if isinstance(entry, dict):
entry = entry['text']
lines = entry.strip().split('\n')
for line in lines:
sentences = nltk_tokenize.sent_tokenize(line)
total_sentence_count += len(sentences)
for sentence in sentences:
maxlen = max(len(line), maxlen)
for word in sentence.split():
if word not in freqs:
freqs[word] = 0
freqs[word] += 1
print("length of freqs before truncating " + str(len(freqs)), flush=True)
print("file path for freq " + str(filepath), flush=True)
freqs_sorted = {}
counter = 0
for word, count in sorted(freqs.items(), key=lambda x: x[1], reverse=True):
if counter >= MAX_SENTENCEPIECE_SENTENCES:
break
counter += 1
freqs_sorted[word] = count
print("length of freqs after trancating " + str(len(freqs_sorted)), flush=True)
with open(filepath, 'w') as f:
writer = csv.writer(f, delimiter=delimiter)
for k, v in freqs_sorted.items():
writer.writerow([str(k), str(v)])
return total_sentence_count, maxlen
class SentencePieceTokenizer(TextTokenizer):
"""Trains and uses sentencepiece for text tokenization"""
def __init__(self, model_type='bpe', vocab_size=None, corpus=None, model_path=None, character_coverage=1.0,
**kwargs):
self.character_coverage = character_coverage
self.model_type = model_type.lower()
self.spm_model = model_path
self.num_text_tokens = vocab_size
make_train = not SentencePieceTokenizer.exists(self.spm_model)
if make_train:
assert corpus is not None and self.num_text_tokens is not None
self.Train(corpus, self.num_text_tokens)
self._tokens = []
self._vocab = {}
self.load_spm_model()
super(SentencePieceTokenizer, self).__init__()
def __len__(self):
return self.num_text_tokens
@property
def tokens(self):
return self._tokens
@property
def vocab(self):
return self._vocab
@staticmethod
def exists(model_path):
if model_path is None:
return False
# check if path exists
dne = not os.path.exists(model_path)
# check if path.model exists
if dne and not model_path.endswith('.model'):
dne = not os.path.exists(model_path + '.model')
return not dne
def load_spm_model(self):
"""load sentencepiece model and parse vocab"""
if not os.path.exists(self.spm_model) and not self.spm_model.endswith('.model'):
self.spm_model = self.spm_model + '.model'
self.sp = spm.SentencePieceProcessor()
self.sp.Load(self.spm_model)
self.vocab_size = self.num_text_tokens = len(self.sp)
self._tokens = [self.IdToToken(t) for t in range(self.vocab_size)]
self._vocab = {t: i for i, t in enumerate(self._tokens)}
def Train(self, corpus, num_text_tokens):
"""train sentencepiece model on corpus using word frequencies"""
self.num_text_tokens = num_text_tokens
use_model_path = self.spm_model
random_hash = str(random.randint(0, 2147483647))
if use_model_path is None:
use_model_path = random_hash
if use_model_path.endswith('.model'):
use_model_path = use_model_path[:use_model_path.rfind('.model')]
input_path = use_model_path + '.tsv.' + random_hash
line_count, maxlenline = get_corpus_freq(corpus, input_path)
line_count = min(line_count, MAX_SENTENCEPIECE_SENTENCES)
print('line count used as input_sentence_size ', line_count, flush=True)
print('training sentencepiece model', flush=True)
train_string = '--input={file_path} --model_prefix={model_prefix} --vocab_size={vocab_size}' \
+ ' --model_type={model_type} --character_coverage={character_coverage} ' \
+ '--input_sentence_size={input_sentence_size} ' \
+ '--input_format=tsv'
train_string = train_string.format(file_path=input_path, model_prefix=use_model_path,
vocab_size=num_text_tokens,
model_type=self.model_type, character_coverage=self.character_coverage,
input_sentence_size=int(line_count)) # , #)#,
print("calling spm.SentencePieceTrainer.Train(%s)" % (train_string), flush=True)
spm.SentencePieceTrainer.Train(train_string)
os.remove(input_path)
self.spm_model = use_model_path + '.model'
print('sentencepiece model written to ' + self.spm_model, flush=True)
def EncodeAsIds(self, text, process_fn=None):
"""convert text to sentencepiece Ids"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.sp.EncodeAsIds(processed_text)
return Tokenization(tokens, processed_text, text)
def EncodeAsTokens(self, text, process_fn=None):
"""convert text to sentencepiece tokens"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.sp.EncodeAsTokens(processed_text)
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id):
"""convert Id to sentencpiece token"""
return self.sp.IdToPiece(Id)
def TokenToId(self, token):
"""convert sentencpiece token to Id"""
return self.sp.PieceToId(token)
def DecodeIds(self, Ids):
"""converts ids to a text string"""
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return self.sp.DecodeIds(Ids)
def DecodeTokens(self, Tokens):
"""converts sentencepiece tokens to a text string"""
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.sp.DecodeTokens(Tokens)
class BertWordPieceTokenizer(Tokenizer):
"""
Loads a pretrained WordPiece tokenizer from `cache_dir` for tokenization
in BERT training. Default to bert-large-uncased tokenizer.
"""
def __init__(self, tokenizer_model_type=None, cache_dir=None, add_block_symbols=False, add_sentinel_token=0,
add_task_mask=False, add_decoder_mask=False, **kwargs):
# default to bert-large-uncased tokenizer
if tokenizer_model_type not in PRETRAINED_VOCAB_ARCHIVE_MAP:
tokenizer_model_type = 'bert-large-uncased'
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
print('loading BertWordPieceTokenizer (', tokenizer_model_type, ') from cache_dir ', cache_dir)
do_lower_case = not ('-cased' in tokenizer_model_type or 'chinese' in tokenizer_model_type)
self.text_tokenizer = BertTokenizer.from_pretrained(tokenizer_model_type, do_lower_case=do_lower_case,
cache_dir=cache_dir)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
print('loaded', tokenizer_model_type)
# disable max len warnings by increasing max len
self.text_tokenizer.max_len = int(1e12)
# set command tokens from wordpiece tokenizer values
self.num_command_tokens = 6
self.num_tokens = len(self.text_tokenizer.vocab)
self.num_text_tokens = self.num_tokens - 5
self.num_type_tokens = 2
self._command_tokens = [
CommandToken('pad', '[PAD]', self.text_tokenizer.vocab['[PAD]']),
CommandToken('ENC', '[CLS]', self.text_tokenizer.vocab['[CLS]']),
CommandToken('MASK', '[MASK]', self.text_tokenizer.vocab['[MASK]']),
CommandToken('unk', '[UNK]', self.text_tokenizer.vocab['[UNK]']),
CommandToken('sep', '[SEP]', self.text_tokenizer.vocab['[SEP]']),
CommandToken('eos', '[PAD]', self.text_tokenizer.vocab['[PAD]']),
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_task_mask:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
if add_sentinel_token > 0:
for i in range(1, add_sentinel_token):
self._command_tokens.extend([CommandToken(f'MASK{i}', f'[MASK{i}]', self.num_tokens),
CommandToken(f'sop{i}', f'<|startofpiece{i}|>', self.num_tokens + 1)])
self.num_tokens += 2
self.num_command_tokens += 2
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
# set type tokens
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
# parse tokens and vocabs from tokenizer
self._tokens = list(self.text_tokenizer.vocab.keys())
self._vocab = {k: v for k, v in self.text_tokenizer.vocab.items()}
self._text_tokens = list(self._tokens)
self._text_token_vocab = {k: v for k, v in self.text_tokenizer.vocab.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def _encode(self, text):
tokens = self.text_tokenizer.tokenize(text)
ids = self.text_tokenizer.convert_tokens_to_ids(tokens)
return ids
def EncodeAsTokens(self, text, process_fn=None):
"""convert wordpiece token to Id"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.text_tokenizer.tokenize(processed_text)
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id, type_token=False):
"""convert Id to sentencpiece token"""
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
return self.text_tokenizer.ids_to_tokens[Id]
def TokenToId(self, token, type_token=False):
"""convert sentencpiece token to Id"""
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
token = token.strip()
return self.text_tokenizer.vocab[token]
def DecodeIds(self, Ids, type_token=False):
"""converts ids to wordpiece tokens and joins them as a text string"""
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
Tokens = []
for Id in Ids:
if Id in self.command_id_map:
Tokens.append(self.command_id_map[Id].token)
elif Id in self.text_tokenizer.ids_to_tokens:
Tokens.append(self.text_tokenizer.ids_to_tokens[Id])
new_tokens = []
for token in Tokens:
if token.startswith('##') and len(new_tokens) > 0:
new_tokens[-1] += token[2:]
else:
new_tokens.append(token)
return ' '.join(new_tokens)
def DecodeTokens(self, Tokens, type_token=False):
"""converts wordpiece tokens to a text string"""
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return ' '.join(Tokens)
class GPT2BPETokenizer(Tokenizer):
def __init__(self, model_type_or_path, cache_dir=None, add_block_symbols=False, add_task_mask=False,
add_decoder_mask=False, **kwargs):
self.text_tokenizer = GPT2Tokenizer.from_pretrained(model_type_or_path,
cache_dir=cache_dir)
# disable max len warnings by increasing max len
self.text_tokenizer.max_len = int(1e12)
self.num_tokens = len(self.text_tokenizer.encoder)
self.num_type_tokens = 2
if model_type_or_path.startswith('roberta'):
self.num_command_tokens = 6
self.num_text_tokens = self.num_tokens - 3
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.text_tokenizer.encoder['</s>']),
CommandToken('eos', '<|endoftext|>', self.text_tokenizer.encoder['</s>']),
CommandToken('sep', '[SEP]', self.text_tokenizer.encoder['</s>']),
CommandToken('ENC', '[CLS]', self.text_tokenizer.encoder['<s>']),
CommandToken('MASK', '[MASK]', self.text_tokenizer.encoder['<mask>'], lstrip=True),
CommandToken('unk', '[UNK]', self.text_tokenizer.encoder['<unk>'])
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
else:
self.num_command_tokens = 2
self.num_text_tokens = self.num_tokens - 1
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.text_tokenizer.encoder['<|endoftext|>']),
CommandToken('eos', '<|endoftext|>', self.text_tokenizer.encoder['<|endoftext|>'])
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1),
CommandToken('ENC', '[CLS]', self.num_tokens + 2),
CommandToken('MASK', '[MASK]', self.num_tokens + 3, lstrip=True),
CommandToken('sep', '[SEP]', self.num_tokens + 4),
CommandToken('unk', '[UNK]', self.num_tokens + 5)
])
self.num_tokens += 6
self.num_command_tokens += 6
if add_block_symbols:
if add_task_mask:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens, lstrip=True),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1, lstrip=True)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
self._tokens = list(self.text_tokenizer.encoder.keys())
self._vocab = {k: v for k, v in self.text_tokenizer.encoder.items()}
self._text_tokens = list(self._tokens)
self._text_token_vocab = {k: v for k, v in self.text_tokenizer.encoder.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
for idx, tok in self.command_id_map.items():
self.text_tokenizer.decoder[idx] = tok.token
def EncodeAsIds(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
def split_on_token(tok_extended: CommandToken, text):
result = []
tok = tok_extended.token
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# CommandToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# Strip white spaces on the right
if tok_extended.rstrip and i > 0:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
sub_text = sub_text.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and i < len(split_text) - 1:
sub_text = sub_text.rstrip() # Opposite here
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self.text_tokenizer.encode(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self._command_token_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self.text_tokenizer.encode(token) if token not in self._command_token_tokens else [
self.command_token_map[token].Id] for token in tokenized_text
)
)
)
no_split_tokens = self._command_tokens
Ids = split_on_tokens(no_split_tokens, processed_text)
tokenization = Tokenization(Ids, processed_text, text)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def _encode(self, text):
return self.text_tokenizer.encode(text)
def EncodeAsTokens(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = []
for token in re.findall(self.text_tokenizer.pat, processed_text):
token = ''.join(self.text_tokenizer.bye_encoder[b] for b in token.encode('utf-8'))
tokens.extend(bpe_token for bpe_token in self.text_tokenizer.bpe(token).split(' '))
tokenization = Tokenization(tokens, processed_text, text, asIds=False)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def DecodeAsTokens(self, Ids):
return [self.IdToToken(x) for x in Ids]
def IdToToken(self, Id, type_token=False):
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
return self.text_tokenizer.decoder[Id]
def TokenToId(self, token, type_token=False):
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
return self.text_tokenizer.encoder[token]
def DecodeIds(self, Ids, type_token=False):
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return self.text_tokenizer.decode(Ids)
def DecodeTokens(self, Tokens, type_token=False):
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.text_tokenizer.decode([self.TokenToId(tok) for tok in Tokens])
class ChineseSPTokenizer(Tokenizer):
def __init__(self, add_block_symbols=False, add_task_mask=False, add_decoder_mask=False, fix_command_token=False,
**kwargs):
self.text_tokenizer = sp_tokenizer.from_pretrained()
self.num_command_tokens = 0
self.num_text_tokens = self.text_tokenizer.sp.vocab_size()
self.num_tokens = self.num_text_tokens
self.num_type_tokens = 2
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.num_text_tokens),
CommandToken('eos', '<|endoftext|>', self.num_text_tokens),
CommandToken('sep', '[SEP]', self.num_text_tokens + 1),
CommandToken('ENC', '[CLS]', self.num_text_tokens + 2),
CommandToken('MASK', '[MASK]', self.num_text_tokens + 3, lstrip=True),
CommandToken('unk', '[UNK]', self.num_text_tokens + 4)
]
self.num_tokens += 5
self.num_command_tokens += 6
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens + 1),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 2)
])
if fix_command_token:
self.num_tokens += 3
else:
self.num_tokens += 2
self.num_command_tokens += 2
if add_task_mask:
if fix_command_token:
self._command_tokens.extend([
CommandToken('sMASK', '[sMASK]', self.num_tokens, lstrip=True),
CommandToken('gMASK', '[gMASK]', self.num_tokens + 1, lstrip=True)
])
else:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens, lstrip=True),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1, lstrip=True)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
print_rank_0({tok.name: tok.Id for tok in self._command_tokens})
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
# self._tokens = list(self.text_tokenizer.encoder.keys())
# self._vocab = {k:v for k,v in self.text_tokenizer.encoder.items()}
#
# self._text_tokens = list(self._tokens)
# self._text_token_vocab = {k:v for k,v in self.text_tokenizer.encoder.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def _encode(self, text):
ids = self.text_tokenizer.encode(text)
return ids
def EncodeAsTokens(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.text_tokenizer.tokenize(processed_text)
tokenization = Tokenization(tokens, processed_text, text, asIds=False)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
# return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id, type_token=False):
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
elif Id in self.type_id_map:
return self.type_id_map[Id].token
else:
return self.text_tokenizer.convert_id_to_token(int(Id))
def TokenToId(self, token, type_token=False):
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
return self.text_tokenizer.convert_token_to_id(token)
def DecodeIds(self, Ids, type_token=False):
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
Ids = list(map(int, Ids))
pieces = []
last = 0
for i, token_id in enumerate(Ids):
if token_id in self.command_id_map:
pieces.append(Ids[last: i])
pieces.append(token_id)
last = i + 1
pieces.append(Ids[last:])
text = ""
for piece in pieces:
if isinstance(piece, int):
text += self.command_id_map[piece].token
elif piece:
text += self.text_tokenizer.decode(piece)
return text
def DecodeTokens(self, Tokens, type_token=False):
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.text_tokenizer.decode([self.TokenToId(tok) for tok in Tokens])