|
import argparse |
|
import json |
|
import os |
|
from utils import OpenAIGPT |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
import random |
|
random.seed(0) |
|
import re |
|
|
|
gpt4_open_free_from_cls_prompt = """Analyze two sentences and determine if they're referring to the same general object or concept, focusing on the type of object, not attributes such as color, size, or shape. Respond with 'T' if they refer to the same thing and 'F' if not. Also, provide a brief rationale (no more than 20 words) for your judgment. |
|
Example: |
|
Input: 1. Spiral staircase that goes from a ground floor. 2. This is a 3D model of wooden stairs in light brown |
|
Output: T#Both refer to a staircase. |
|
|
|
Now, analyze the following: |
|
Input: 1. {ground_truth} 2. {model_output} |
|
Output: """ |
|
|
|
chatgpt_close_set_cls_prompt = """Given the following free-form description of a 3D object, please determine the most probable class index from the following 40 available categories, even if the description doesn't clearly refer to any one of them. Make your best-educated guess based on the information provided. If the description already contains a valid index, then the index should be selected. If it contains more than one valid index, then randomly select one index (specify your reason). If there is no valid index and it cannot be inferred from the information, return '-1#NA#Cannot infer'. |
|
Categories: |
|
{candidate_lists} |
|
Reply with the format of 'index#class#short reason (no more than 10 words)'. |
|
|
|
Examples: |
|
Input: This is a 3D object model of a cartoon white truck. |
|
Output: 7#car#Closest match to 'car' in categories. |
|
|
|
Input: A green leaf in a flower pot. |
|
Output: 26#plant#The primary subject 'leaf' directly indicates a plant. |
|
|
|
Input: It's difficult to determine the exact type of this object due to insufficient details. But it seems to be like a piece of furniture. |
|
Output: 33#table#Randomly select one kind of furniture from the list. |
|
|
|
Input: I cannot determine the specific type of the object without additional information or context. |
|
Output: -1#NA#Cannot infer. |
|
|
|
Now analyze the following: |
|
Input: """ |
|
|
|
gpt4_object_captioning_prompt = """Evaluate a model-generated caption against a human-generated caption (ground truth) for a 3D model. Identify the aspects mentioned in the human caption and calculate the percentage of these aspects correctly mentioned or partially matched in the model caption. Score from 0 to 100, where each aspect contributes equally to the score. Consider similar concepts for partial score. |
|
|
|
Provide your score (0-100) and a short justification (less than 15 words) in the format of 'score#reason' |
|
|
|
Example: |
|
Human: A white brown skeleton |
|
Model: This is a 3D model of a small, cartoon-like robot. It has a spherical body and is covered in a layer of white dust. |
|
Output: 50#mention white; skeleton and robot have similar appearence. |
|
|
|
Now score the following: |
|
Human: {ground_truth} |
|
Model: {model_output} |
|
Output: """ |
|
|
|
chatgpt_object_captioning_prompt = gpt4_object_captioning_prompt |
|
chatgpt_open_free_from_cls_prompt = gpt4_open_free_from_cls_prompt |
|
gpt4_close_set_cls_prompt = chatgpt_close_set_cls_prompt |
|
|
|
GPT_PRICES = { |
|
|
|
"gpt-3.5-turbo-0613": { |
|
"price_1k_prompt_tokens": 0.0015, |
|
"price_1k_completion_tokens": 0.002 |
|
}, |
|
"gpt-3.5-turbo-1106": { |
|
"price_1k_prompt_tokens": 0.0010, |
|
"price_1k_completion_tokens": 0.002 |
|
}, |
|
"gpt-4-0613":{ |
|
"price_1k_prompt_tokens": 0.03, |
|
"price_1k_completion_tokens": 0.06 |
|
}, |
|
"gpt-4-1106-preview":{ |
|
"price_1k_prompt_tokens": 0.01, |
|
"price_1k_completion_tokens": 0.03 |
|
} |
|
} |
|
|
|
class OpenAIOpenFreeFormClsEvaluator(): |
|
def __init__(self, inputs, output_dir, output_file, model_type="gpt-4-0613"): |
|
""" |
|
Args: |
|
inputs: A dictionary containing the results of the evaluation. It contains two keys: "results" and "prompt". |
|
"prompt": str |
|
"results": [ |
|
{ |
|
"object_id": str, |
|
"model_output": str, |
|
"ground_truth": str |
|
} |
|
] |
|
""" |
|
print("-" * 80) |
|
print("Initializing OpenAIEvaluator...") |
|
self.results = inputs['results'] |
|
self.inference_prompt = inputs['prompt'] |
|
self.correct_predictions = 0 |
|
self.total_predictions = 0 |
|
self.invalid_responses = 0 |
|
self.response_data = [] |
|
self.model_type = model_type |
|
self.check_model_type() |
|
|
|
self.prompt_tokens = 0 |
|
self.completion_tokens = 0 |
|
|
|
self.default_chat_parameters = { |
|
"model": model_type, |
|
"temperature": 1, |
|
"top_p": 1, |
|
"max_tokens": 2048 |
|
} |
|
|
|
|
|
self.price_1k_prompt_tokens = GPT_PRICES[model_type]["price_1k_prompt_tokens"] |
|
self.price_1k_completion_tokens = GPT_PRICES[model_type]["price_1k_completion_tokens"] |
|
|
|
print(f"OpenAIGPT config: ") |
|
print(self.default_chat_parameters) |
|
|
|
self.openaigpt = OpenAIGPT(**self.default_chat_parameters) |
|
self.gpt_prompt = chatgpt_open_free_from_cls_prompt if "gpt-3.5" in model_type else gpt4_open_free_from_cls_prompt |
|
self.output_dir = output_dir |
|
self.output_file = output_file |
|
self.temp_output_file = self.output_file.replace(".json", "_processed_temp.json") |
|
|
|
def check_model_type(self): |
|
|
|
if "gpt-4" not in self.model_type: |
|
print(f"[WARNING] You are using {self.model_type} for evaluation. We recommend using gpt-4 for this task.") |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.correct_predictions = saved_results["correct_predictions"] |
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def remove_temp_file(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
os.remove(processed_results_path) |
|
print("-" * 80) |
|
print(f"Removed Temporary file {processed_results_path}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response): |
|
gpt_response = gpt_response.strip() |
|
|
|
cls_result = gpt_response[0].upper() |
|
reason = gpt_response[2:] if len(gpt_response) > 2 else "" |
|
|
|
if cls_result not in ['T', 'F']: |
|
self.invalid_responses += 1 |
|
return 0, "INVALID", gpt_response |
|
|
|
accuracy = 1 if cls_result == 'T' else 0 |
|
|
|
return accuracy, cls_result, reason |
|
|
|
def evaluate_result(self, result): |
|
object_id = result['object_id'] |
|
ground_truth = result['ground_truth'] |
|
model_output = result['model_output'] |
|
messages = [{"role": "user", "content": self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output)}] |
|
|
|
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False) |
|
|
|
prompt_tokens = gpt_response['usage']['prompt_tokens'] |
|
completion_tokens = gpt_response['usage']['completion_tokens'] |
|
|
|
gpt_response = gpt_response['choices'][0]["message"]['content'] |
|
|
|
|
|
accuracy, cls_result, reason = self.parse_gpt_response_evaluate(gpt_response) |
|
|
|
return object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens = self.evaluate_result(result) |
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
'gpt_cls_result': cls_result, |
|
'gpt_reason': reason |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
with Pool(num_workers) as pool: |
|
with tqdm(total=len(results)) as pbar: |
|
for object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results): |
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if cls_result == 'INVALID': |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
'gpt_cls_result': cls_result, |
|
'gpt_reason': reason |
|
}) |
|
|
|
pbar.update() |
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100 |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'prompt': self.gpt_prompt, |
|
'accuracy': f"{accuracy:.2f}%", |
|
'total_predictions': self.total_predictions, |
|
'correct_predictions': self.correct_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100 |
|
print("Results:") |
|
print(f"Accuracy: {accuracy:.2f}%") |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Correct Predictions: {self.correct_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
self.print_costs() |
|
|
|
def print_costs(self): |
|
print(f"Prompt Tokens Price: {self.prompt_tokens * self.price_1k_prompt_tokens / 1000:.2f} USD") |
|
print(f"Completion Tokens Price: {self.completion_tokens * self.price_1k_completion_tokens / 1000:.2f} USD") |
|
|
|
def get_costs(self): |
|
return self.prompt_tokens * self.price_1k_prompt_tokens / 1000 + self.completion_tokens * self.price_1k_completion_tokens / 1000 |
|
|
|
|
|
class OpenAICloseSetClsEvaluator(OpenAIOpenFreeFormClsEvaluator): |
|
def __init__(self, inputs, output_dir, output_file, model_type="gpt-3.5-turbo-0613"): |
|
super().__init__(inputs, output_dir, output_file, model_type) |
|
self.gpt_prompt = chatgpt_close_set_cls_prompt if "gpt-3.5" in model_type else gpt4_close_set_cls_prompt |
|
|
|
self.invalid_correct_predictions = 0 |
|
|
|
|
|
try: |
|
|
|
catfile = os.path.join(os.path.dirname(__file__), '../data/modelnet_config/modelnet40_shape_names_modified.txt') |
|
self.candidate_lists_names = [line.strip() for line in open(catfile)] |
|
except: |
|
print(f"Current categories file is {catfile}. Need to move the category file to pointllm/eval/configs/.") |
|
|
|
|
|
candidate_lists = [f'{i}: {cat}' for i, cat in enumerate(self.candidate_lists_names)] |
|
self.num_categories = len(candidate_lists) |
|
self.candidate_lists = '\n'.join(candidate_lists) |
|
self.gpt_prompt = self.gpt_prompt.format(num_categories=self.num_categories, candidate_lists=self.candidate_lists) + "{model_output}\nOutput: " |
|
|
|
def check_model_type(self): |
|
|
|
return |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.correct_predictions = saved_results["correct_predictions"] |
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.invalid_correct_predictions = saved_results["invalid_correct_predictions"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response, ground_truth): |
|
""" |
|
Argument: |
|
gpt_response: str, index#label#short_reason |
|
groud_truth: int |
|
""" |
|
|
|
|
|
pattern = r'(\d+#[^#]*#.*$)' |
|
match = re.search(pattern, gpt_response) |
|
|
|
gpt_response = match.group(1) if match else gpt_response |
|
|
|
gpt_response = gpt_response.strip() |
|
gpt_response_list = gpt_response.split('#') |
|
|
|
cls_result = gpt_response_list[0] |
|
cls_label = gpt_response_list[1] if len(gpt_response_list) > 1 else "" |
|
reason = gpt_response_list[2] if len(gpt_response_list) > 2 else "" |
|
|
|
try: |
|
|
|
cls_result = int(cls_result) |
|
if cls_result not in range(self.num_categories) or cls_label == "NA": |
|
|
|
cls_result = -1 |
|
except ValueError: |
|
print(f"Error: unale to parse {gpt_response}.") |
|
cls_result = -1 |
|
|
|
if cls_result == -1: |
|
|
|
cls_result = random.choice(range(self.num_categories)) |
|
cls_label = "INVALID" |
|
reason = gpt_response |
|
|
|
self.invalid_responses += 1 |
|
|
|
accuracy = 1 if cls_result == ground_truth else 0 |
|
|
|
return accuracy, cls_result, cls_label, reason |
|
|
|
def evaluate_result(self, result): |
|
object_id = result.get('object_id', -1) |
|
ground_truth = result['ground_truth'] |
|
ground_truth_label = result['label_name'] |
|
model_output = result['model_output'] |
|
|
|
messages = [{"role": "user", "content": self.gpt_prompt.format(model_output=model_output)}] |
|
|
|
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False) |
|
|
|
prompt_tokens = gpt_response['usage']['prompt_tokens'] |
|
completion_tokens = gpt_response['usage']['completion_tokens'] |
|
|
|
gpt_response = gpt_response['choices'][0]["message"]['content'] |
|
|
|
accuracy, cls_result, cls_label, reason = self.parse_gpt_response_evaluate(gpt_response, ground_truth) |
|
|
|
return object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens = self.evaluate_result(result) |
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
|
|
if cls_label == "INVALID": |
|
self.invalid_correct_predictions += accuracy |
|
self.invalid_responses += 1 |
|
|
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'gpt_cls_result': cls_result, |
|
'ground_truth_label': ground_truth_label, |
|
'gpt_cls_label': cls_label, |
|
'model_output': model_output, |
|
'gpt_reason': reason, |
|
'prompt_tokens': prompt_tokens, |
|
'completion_tokens': completion_tokens |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
print(f"Current sample is {result}.") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
with Pool(num_workers) as pool: |
|
with tqdm(total=len(results)) as pbar: |
|
for object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results): |
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
|
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if cls_label == "INVALID": |
|
self.invalid_correct_predictions += accuracy |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'gpt_cls_result': cls_result, |
|
'ground_truth_label': ground_truth_label, |
|
'gpt_cls_label': cls_label, |
|
'model_output': model_output, |
|
'gpt_reason': reason, |
|
'prompt_tokens': prompt_tokens, |
|
'completion_tokens': completion_tokens |
|
}) |
|
|
|
pbar.update() |
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
clean_accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / (self.total_predictions - self.invalid_responses) * 100 |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'prompt': self.gpt_prompt, |
|
'accuracy': f"{accuracy:.2f}%", |
|
'clean_accuracy': f"{clean_accuracy:.2f}%", |
|
'total_predictions': self.total_predictions, |
|
'correct_predictions': self.correct_predictions, |
|
'invalid_correct_predictions': self.invalid_correct_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / (self.total_predictions - self.invalid_responses) * 100 |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
print("Results:") |
|
print(f"Accuracy: {accuracy:.2f}%") |
|
print(f"Clean Accuracy: {clean_accuracy:.2f}%",) |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Correct Predictions: {self.correct_predictions}") |
|
print(f"Invalid Correct Predictions: {self.invalid_correct_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
print(f"Prompt Tokens: {self.prompt_tokens}") |
|
print(f"Completion Tokens: {self.completion_tokens}") |
|
|
|
self.print_costs() |
|
|
|
class OpenAIObjectCaptioningEvaluator(OpenAIOpenFreeFormClsEvaluator): |
|
def __init__(self, inputs, output_dir, output_file, model_type="gpt-4-0613"): |
|
super().__init__(inputs, output_dir, output_file, model_type) |
|
self.gpt_prompt = chatgpt_object_captioning_prompt if "gpt-3.5" in model_type else gpt4_object_captioning_prompt |
|
|
|
self.total_scores = 0 |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.total_scores = float(saved_results["total_score"]) |
|
|
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response, ground_truth): |
|
""" |
|
Argument: |
|
gpt_response: str, index#label#short_reason |
|
groud_truth: int |
|
""" |
|
|
|
|
|
pattern = r'(\d*#.*)' |
|
match = re.search(pattern, gpt_response) |
|
|
|
gpt_response = match.group(1) if match else gpt_response |
|
|
|
gpt_response = gpt_response.strip() |
|
gpt_response_list = gpt_response.split('#') |
|
|
|
gpt_score = gpt_response_list[0] |
|
reason = gpt_response_list[1] if len(gpt_response_list) > 1 else "" |
|
|
|
try: |
|
|
|
gpt_score = int(gpt_score) |
|
if gpt_score not in range(101): |
|
|
|
gpt_score = -1 |
|
except ValueError: |
|
print(f"Error: unale to parse {gpt_response}.") |
|
gpt_score = -1 |
|
|
|
if gpt_score == -1: |
|
reason = gpt_response |
|
|
|
return gpt_score, reason |
|
|
|
def evaluate_result(self, result): |
|
object_id = result.get('object_id', -1) |
|
ground_truth = result['ground_truth'] |
|
model_output = result['model_output'] |
|
|
|
messages = [{"role": "user", "content": self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output)}] |
|
|
|
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False) |
|
|
|
prompt_tokens = gpt_response['usage']['prompt_tokens'] |
|
completion_tokens = gpt_response['usage']['completion_tokens'] |
|
|
|
gpt_response = gpt_response['choices'][0]["message"]['content'] |
|
|
|
gpt_score, reason = self.parse_gpt_response_evaluate(gpt_response, ground_truth) |
|
|
|
return object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens = self.evaluate_result(result) |
|
|
|
self.total_scores += gpt_score if gpt_score != -1 else 0 |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if gpt_score == -1: |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
"gpt_score": gpt_score, |
|
'gpt_reason': reason |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
with Pool(num_workers) as pool: |
|
with tqdm(total=len(results)) as pbar: |
|
for object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results): |
|
self.total_scores += gpt_score if gpt_score != -1 else 0 |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if gpt_score == -1: |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
"gpt_score": gpt_score, |
|
'gpt_reason': reason |
|
}) |
|
|
|
pbar.update() |
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
average_score = 0 |
|
else: |
|
average_score = self.total_scores / (self.total_predictions - self.invalid_responses) |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'gpt_prompt': self.gpt_prompt, |
|
'average_score': f"{average_score:.2f}", |
|
'total_score': f"{self.total_scores:.2f}", |
|
'total_predictions': self.total_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
average_score = 0 |
|
else: |
|
average_score = self.total_scores / (self.total_predictions - self.invalid_responses) |
|
print("Results:") |
|
print(f"Average Score: {average_score:.2f}") |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
print(f"Prompt Tokens: {self.prompt_tokens}") |
|
print(f"Completion Tokens: {self.completion_tokens}") |
|
|
|
self.print_costs() |
|
|
|
|
|
def start_evaluation(results, output_dir, output_file, eval_type="open-free-form-classification", model_type="gpt-3.5-turbo-0613", |
|
parallel=True, num_workers=20): |
|
""" |
|
Args: |
|
results: dict or file path to the json file containing the dict |
|
output_file: the path the final evaluation results to be saved. |
|
""" |
|
if isinstance(results, str): |
|
with open(results, 'r') as fp: |
|
results = json.load(fp) |
|
|
|
if eval_type == "open-free-form-classification": |
|
evaluator = OpenAIOpenFreeFormClsEvaluator(results, output_dir, output_file, model_type=model_type) |
|
elif eval_type == "modelnet-close-set-classification": |
|
evaluator = OpenAICloseSetClsEvaluator(results, output_dir, output_file, model_type=model_type) |
|
elif eval_type == "object-captioning": |
|
evaluator = OpenAIObjectCaptioningEvaluator(results, output_dir, output_file, model_type=model_type) |
|
else: |
|
raise NotImplementedError(f"eval_type {eval_type} not supported.") |
|
|
|
if parallel: |
|
evaluator.parallel_evaluate(num_workers=num_workers) |
|
else: |
|
evaluator.evaluate() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--results_path", type=str, \ |
|
default="", help="Path to the results file.") |
|
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output directory.") |
|
parser.add_argument("--model_type", type=str, default="gpt-4-0613", choices=["gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106", "gpt-4-0613", "gpt-4-1106-preview"], help="Type of the model used to evaluate.") |
|
parser.add_argument("--parallel", default=True, action="store_true", help="Whether to use parallel evaluation.") |
|
parser.add_argument("--num_workers", type=int, default=15, help="Number of workers to use for parallel evaluation.") |
|
parser.add_argument("--eval_type", type=str, choices=["modelnet-close-set-classification", "open-free-form-classification", "object-captioning"], default="object-captioning") |
|
|
|
args = parser.parse_args() |
|
|
|
if args.output_dir is None: |
|
args.output_dir = os.path.dirname(args.results_path) |
|
|
|
output_file = os.path.basename(args.results_path).replace(".json", f"_evaluated_{args.model_type}.json") |
|
|
|
|
|
if os.path.exists(os.path.join(args.output_dir, output_file)): |
|
print(f"[INFO] Evaulated results already exists in {os.path.join(args.output_dir, output_file)}.") |
|
exit() |
|
|
|
start_evaluation(results=args.results_path, output_dir=args.output_dir, output_file=output_file, eval_type=args.eval_type, model_type=args.model_type, |
|
parallel=args.parallel, num_workers=args.num_workers) |
|
|