ner-kazakh / app.py
yeshpanovrustem's picture
Update app.py
6fb6ead
raw
history blame
8.31 kB
from annotated_text import annotated_text, parameters, annotation
import razdel
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import streamlit as st
import torch
nltk.download('punkt')
# add the caching decorator and use custom text for spinner
@st.cache_resource(show_spinner = "Loading the model...")
def label_text(text):
if text != "":
tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
nlp = pipeline("ner", model = model, tokenizer = tokenizer)
labels_dict = {0: 'O',
1: 'B-ADAGE',
2: 'I-ADAGE',
3: 'B-ART',
4: 'I-ART',
5: 'B-CARDINAL',
6: 'I-CARDINAL',
7: 'B-CONTACT',
8: 'I-CONTACT',
9: 'B-DATE',
10: 'I-DATE',
11: 'B-DISEASE',
12: 'I-DISEASE',
13: 'B-EVENT',
14: 'I-EVENT',
15: 'B-FACILITY',
16: 'I-FACILITY',
17: 'B-GPE',
18: 'I-GPE',
19: 'B-LANGUAGE',
20: 'I-LANGUAGE',
21: 'B-LAW',
22: 'I-LAW',
23: 'B-LOCATION',
24: 'I-LOCATION',
25: 'B-MISCELLANEOUS',
26: 'I-MISCELLANEOUS',
27: 'B-MONEY',
28: 'I-MONEY',
29: 'B-NON_HUMAN',
30: 'I-NON_HUMAN',
31: 'B-NORP',
32: 'I-NORP',
33: 'B-ORDINAL',
34: 'I-ORDINAL',
35: 'B-ORGANISATION',
36: 'I-ORGANISATION',
37: 'B-PERSON',
38: 'I-PERSON',
39: 'B-PERCENTAGE',
40: 'I-PERCENTAGE',
41: 'B-POSITION',
42: 'I-POSITION',
43: 'B-PRODUCT',
44: 'I-PRODUCT',
45: 'B-PROJECT',
46: 'I-PROJECT',
47: 'B-QUANTITY',
48: 'I-QUANTITY',
49: 'B-TIME',
50: 'I-TIME'}
single_sentence_tokens = [_.text for _ in list(razdel.tokenize(text))]
tokenized_input = tokenizer(single_sentence_tokens, is_split_into_words = True, return_tensors = "pt")
tokens = tokenized_input.tokens()
output = model(**tokenized_input).logits
predictions = torch.argmax(output, dim = 2)
# convert label IDs to label names
word_ids = tokenized_input.word_ids(batch_index = 0)
previous_word_id = None
labels = []
for token, word_id, prediction in zip(tokens, word_ids, predictions[0].numpy()):
# # Special tokens have a word id that is None. We set the label to -100 so they are
# # automatically ignored in the loss function.
if word_id is None or word_id == previous_word_id:
continue
elif word_id != previous_word_id:
labels.append(labels_dict[prediction])
previous_word_id = word_id
assert len(single_sentence_tokens) == len(labels), "Mismatch between input token and label sizes!"
sentence_tokens = []
sentence_labels = []
token_list = []
label_list = []
previous_token = ""
previous_label = ""
for token, label in zip(single_sentence_tokens, labels):
current_token = token
current_label = label
# starting loop
if previous_label == "":
previous_token = current_token
previous_label = current_label
# collecting compound named entities
elif (previous_label.startswith("B-")) and (current_label.startswith("I-")):
token_list.append(previous_token)
label_list.append(previous_label)
elif (previous_label.startswith("I-")) and (current_label.startswith("I-")):
token_list.append(previous_token)
label_list.append(previous_label)
elif (previous_label.startswith("I-")) and (not current_label.startswith("I-")):
token_list.append(previous_token)
label_list.append(previous_label)
sentence_tokens.append(token_list)
sentence_labels.append(label_list)
token_list = []
label_list = []
# collecting single named entities:
elif (not previous_label.startswith("I-")) and (not current_label.startswith("I-")):
token_list.append(previous_token)
label_list.append(previous_label)
sentence_tokens.append(token_list)
sentence_labels.append(label_list)
token_list = []
label_list = []
previous_token = current_token
previous_label = current_label
token_list.append(previous_token)
label_list.append(previous_label)
sentence_tokens.append(token_list)
sentence_labels.append(label_list)
output = []
for sentence_token, sentence_label in zip(sentence_tokens, sentence_labels):
if len(sentence_label[0]) > 1:
if len(sentence_label) > 1:
output.append((" ".join(sentence_token), sentence_label[0].split("-")[1]))
else:
output.append((sentence_token[0], sentence_label[0].split("-")[1]))
else:
# output.append((sentence_token[0], sentence_label[0]))
output.append(sentence_token[0])
modified_output = []
for element in output:
if not isinstance(element, tuple):
if element.isalnum():
modified_output.append(' ' + element + ' ')
else:
modified_output.append(' ' + element + ' ')
else:
tuple_first = f" {element[0]} "
tuple_second = element[1]
new_tuple = (tuple_first, tuple_second)
modified_output.append(new_tuple)
else:
return st.markdown("<p id = 'warning'>PLEASE INSERT YOUR TEXT</p>", unsafe_allow_html = True)
return modified_output
#########################
#### CREATE SIDEBAR #####
#########################
with open("style.css") as f:
css = f.read()
st.sidebar.markdown(f'<style>{css}</style>', unsafe_allow_html = True)
st.sidebar.markdown("<h1>Kazakh NER</h1>", unsafe_allow_html = True)
st.sidebar.markdown("<h2>Named entity classes</h2>", unsafe_allow_html = True)
with st.sidebar.expander("ADAGE"): st.write("Well-known Kazakh proverbs and sayings")
with st.sidebar.expander("ART"): st.write("Titles of books, songs, television programmes, etc.")
with st.sidebar.expander("CARDINAL"): st.write("Cardinal numbers, including whole numbers, fractions, and decimals")
with st.sidebar.expander("CONTACT"): st.write("Addresses, emails, phone numbers, URLs")
with st.sidebar.expander("DATE"): st.write("Dates or periods of 24 hours or more")
with st.sidebar.expander("DISEASE"): st.write("Diseases or medical conditions")
with st.sidebar.expander("EVENT"): st.write("Named events and phenomena")
with st.sidebar.expander("FACILITY"): st.write("Names of man-made structures")
with st.sidebar.expander("GPE"): st.write("Names of geopolitical entities")
with st.sidebar.expander("LANGUAGE"): st.write("Named languages")
with st.sidebar.expander("LAW"): st.write("Named legal documents")
with st.sidebar.expander("LOCATION"): st.write("Names of geographical locations other than GPEs")
with st.sidebar.expander("MISCELLANEOUS"): st.write("Entities of interest but hard to assign a proper tag to")
with st.sidebar.expander("MONEY"): st.write("Monetary values")
with st.sidebar.expander("NON_HUMAN"): st.write("Names of pets, animals or non-human creatures")
with st.sidebar.expander("NORP"): st.write("Adjectival forms of GPE and LOCATION; named religions, etc.")
with st.sidebar.expander("ORDINAL"): st.write("Ordinal numbers, including adverbials")
with st.sidebar.expander("ORGANISATION"): st.write("Names of companies, government agencies, etc.")
with st.sidebar.expander("PERCENTAGES"): st.write("Percentages")
with st.sidebar.expander("PERSON"): st.write("Names of persons")
with st.sidebar.expander("POSITION"): st.write("Names of posts and job titles")
with st.sidebar.expander("PRODUCT"): st.write("Names of products")
with st.sidebar.expander("PROJECT"): st.write("Names of projects, policies, plans, etc.")
with st.sidebar.expander("QUANTITY"): st.write("Length, distance, etc. measurements")
with st.sidebar.expander("TIME"): st.write("Times of day and time duration less than 24 hours")
######################
#### CREATE FORM #####
######################
text_field = st.form(key = 'text_field')
form_text = text_field.text_input('Insert your text here')
submit = text_field.form_submit_button('Submit')
st.markdown('Press **Submit** to have your text labelled')
if submit:
annotated_text(label_text(form_text))