yashvii's picture
Upload folder using huggingface_hub
25b584d verified
raw
history blame
18.3 kB
import sys
sys.path.append('./')
from typing import Tuple
import os
import cv2
import math
import torch
import random
import numpy as np
import argparse
import pandas as pd
import PIL
from PIL import Image
import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler
from huggingface_hub import hf_hub_download
import insightface
from insightface.app import FaceAnalysis
from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc
import os
# try:
# # Send a GET request to the URL
# response = requests.get("https://storage.googleapis.com/idfy-gff-public/idfy-gff-public%40idfy-eve-ml-training.iam.gserviceaccount.com.json")
# # Raise an exception if the request was unsuccessful
# response.raise_for_status()
# # Save the file to the specified path
# with open("serviceaccount.json", 'wb') as file:
# file.write(response.content)
# print(f"Service account JSON file successfully downloaded")
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "serviceaccount.json"
# except requests.exceptions.RequestException as e:
# print(f"Failed to download the service account JSON file: {e}")
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"
# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'
# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
logo = Image.open("./gradio_demo/watermark.png")
logo = logo.resize((100, 100))
from cv2 import imencode
import base64
import gradio as gr
from google.cloud import storage
from io import BytesIO
def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
scheduler_kwargs = hf_hub_download(
repo_id="wangqixun/YamerMIX_v8",
subfolder="scheduler",
filename="scheduler_config.json",
)
(tokenizers, text_encoders, unet, _, vae) = load_models_xl(
pretrained_model_name_or_path=pretrained_model_name_or_path,
scheduler_name=None,
weight_dtype=dtype,
)
scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
pipe = StableDiffusionXLInstantIDPipeline(
vae=vae,
text_encoder=text_encoders[0],
text_encoder_2=text_encoders[1],
tokenizer=tokenizers[0],
tokenizer_2=tokenizers[1],
unet=unet,
scheduler=scheduler,
controlnet=controlnet,
).to(device)
else:
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
pretrained_model_name_or_path,
controlnet=controlnet,
torch_dtype=dtype,
safety_checker=None,
feature_extractor=None,
).to(device)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.load_ip_adapter_instantid(face_adapter)
# load and disable LCM
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.disable_lora()
def remove_tips():
return gr.update(visible=False)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[0], n)
# else:
# raise gr.Error("Email ID is compulsory")
def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[1], n)
def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[2], n)
def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)):
# if email != "":
p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
return generate_image(face_file, p[3], n)
def upload_pil_image_to_gcs(image, destination_blob_name):
bucket_name="idfy-gff-public"
# Convert PIL image to byte stream
image_byte_array = BytesIO()
image.save(image_byte_array, format='PNG') # Save image in its original format
image_byte_array.seek(0)
# Initialize a GCP client
storage_client = storage.Client()
# Get the bucket
bucket = storage_client.bucket(bucket_name)
# Create a blob object from the filename
blob = bucket.blob(destination_blob_name)
# Upload the image to GCS
blob.upload_from_file(image_byte_array, content_type=f'image/png')
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(input_image, max_side=1280, min_side=1280, size=None,
pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
# def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
# p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
# return p.replace("{prompt}", positive), n + ' ' + negative
def store_images(email, gallery1, gallery2, gallery3, gallery4,consent,style):
if not email:
raise gr.Error("Email Id not provided")
if not consent:
raise gr.Error("Consent not provided")
for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1):
try:
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
dest = f'{email}/img{i}@{style}.png'
upload_pil_image_to_gcs(img,dest)
except Exception as e:
print()
gr.Info("Thankyou!! Your avatar is on the way to your inbox")
return None,None,None,None,None
def add_watermark(image, watermark=logo, opacity=128, position="bottom_right", padding=10):
# Convert NumPy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if isinstance(watermark, np.ndarray):
watermark = Image.fromarray(watermark)
# Convert images to 'RGBA' mode to handle transparency
image = image.convert("RGBA")
watermark = watermark.convert("RGBA")
# Adjust the watermark opacity
watermark = watermark.copy()
watermark.putalpha(opacity)
# Calculate the position for the watermark
if position == "bottom_right":
x = image.width - watermark.width - padding
y = image.height - watermark.height - padding
elif position == "bottom_left":
x = padding
y = image.height - watermark.height - padding
elif position == "top_right":
x = image.width - watermark.width - padding
y = padding
elif position == "top_left":
x = padding
y = padding
else:
raise ValueError("Unsupported position. Choose from 'bottom_right', 'bottom_left', 'top_right', 'top_left'.")
# Paste the watermark onto the image
image.paste(watermark, (x, y), watermark)
# Convert back to 'RGB' if the original image was not 'RGBA'
if image.mode != "RGBA":
image = image.convert("RGB")
# return resize_img(image)
return image
def generate_image(face_image,prompt,negative_prompt):
pose_image_path = None
# prompt = "superman"
enable_LCM = False
identitynet_strength_ratio = 0.90
adapter_strength_ratio = 0.60
num_steps = 15
guidance_scale = 5
seed = random.randint(0, MAX_SEED)
enhance_face_region = True
if enable_LCM:
pipe.enable_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
else:
pipe.disable_lora()
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
if face_image is None:
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info['kps'])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
generator = torch.Generator(device=device).manual_seed(seed)
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
control_mask=control_mask,
controlnet_conditioning_scale=float(identitynet_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
# num_images_per_prompt = 4
).images
watermarked_image = add_watermark(images[0])
# return images[0]
return watermarked_image
### Description
title = r"""
<h1 align="center" style="color:white;">Choose your AVATAR</h1>
"""
description = r"""
<h2 style="color:white;"> Powered by IDfy </h2>"""
article = r""""""
tips = r""""""
css = '''
.gradio-container {width: 100% !important; color: white; background: linear-gradient(135deg, #1C43B9, #254977, #343434);}
.gradio-row .gradio-element { margin: 0 !important; }
.centered-column {
display: flex;
justify-content: center;
align-items: center;
width: 100%;}
#submit-btn, #store-btn {
background: linear-gradient(to right, #ffffff, #f2bb13); !important;
color: #254977 !important;
}
'''
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
with gr.Column():
with gr.Row():
gr.Image("./gradio_demo/logo.png", scale=0, min_width=50, show_label=False, show_download_button=False, show_share_button=False)
gr.Markdown(description)
style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
with gr.Row(equal_height=True): # Center the face file
with gr.Column(elem_id="centered-face", elem_classes=["centered-column"]): # Use CSS class for centering
face_file = gr.Image(label="Upload a photo of your face", type="pil", height=400, width=500)
submit = gr.Button("Submit", variant="primary",elem_id="submit-btn")
with gr.Column():
with gr.Row():
gallery1 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
gallery2 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
with gr.Row():
gallery3 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
gallery4 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
email = gr.Textbox(label="Email", info="Enter your email address", value="")
consent = gr.Checkbox(label="I am giving my consent to use my data to share my AI Avtar and IDfy relevant information from time to time", value=True)
submit1 = gr.Button("SUBMIT", variant = "primary", elem_id="store-btn")
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
face_file.upload(
fn=remove_tips,
outputs=usage_tips,
queue=True,
api_name=False,
show_progress = "full"
).then(
fn=run_for_prompts1,
inputs=[face_file,style],
outputs=[gallery1]
).then(
fn=run_for_prompts2,
inputs=[face_file,style],
outputs=[gallery2]
).then(
fn=run_for_prompts3,
inputs=[face_file,style],
outputs=[gallery3]
).then(
fn=run_for_prompts4,
inputs=[face_file,style],
outputs=[gallery4]
)
submit.click(
fn=remove_tips,
outputs=usage_tips,
queue=True,
api_name=False,
show_progress = "full"
).then(
fn=run_for_prompts1,
inputs=[face_file,style],
outputs=[gallery1]
).then(
fn=run_for_prompts2,
inputs=[face_file,style],
outputs=[gallery2]
).then(
fn=run_for_prompts3,
inputs=[face_file,style],
outputs=[gallery3]
).then(
fn=run_for_prompts4,
inputs=[face_file,style],
outputs=[gallery4]
)
submit1.click(
fn=store_images,
inputs=[email,gallery1,gallery2,gallery3,gallery4,consent,style],
outputs=[face_file,gallery1,gallery2,gallery3,gallery4])
gr.Markdown(article)
demo.launch(share=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
args = parser.parse_args()
main(args.pretrained_model_name_or_path, False)