|
import numpy as np |
|
import torch |
|
import math |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
def get_device(): |
|
|
|
return torch.device('cpu') |
|
|
|
def scaled_dot_product(q, k, v, mask=None): |
|
d_k = q.size()[-1] |
|
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k) |
|
if mask is not None: |
|
scaled = scaled.permute(1, 0, 2, 3) + mask |
|
scaled = scaled.permute(1, 0, 2, 3) |
|
attention = F.softmax(scaled, dim=-1) |
|
values = torch.matmul(attention, v) |
|
return values, attention |
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, max_sequence_length): |
|
super().__init__() |
|
self.max_sequence_length = max_sequence_length |
|
self.d_model = d_model |
|
|
|
def forward(self): |
|
even_i = torch.arange(0, self.d_model, 2).float() |
|
denominator = torch.pow(10000, even_i/self.d_model) |
|
position = (torch.arange(self.max_sequence_length) |
|
.reshape(self.max_sequence_length, 1)) |
|
even_PE = torch.sin(position / denominator) |
|
odd_PE = torch.cos(position / denominator) |
|
stacked = torch.stack([even_PE, odd_PE], dim=2) |
|
PE = torch.flatten(stacked, start_dim=1, end_dim=2) |
|
return PE |
|
|
|
class SentenceEmbedding(nn.Module): |
|
"For a given sentence, create an embedding" |
|
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN): |
|
super().__init__() |
|
self.vocab_size = len(language_to_index) |
|
self.max_sequence_length = max_sequence_length |
|
self.embedding = nn.Embedding(self.vocab_size, d_model) |
|
self.language_to_index = language_to_index |
|
self.position_encoder = PositionalEncoding(d_model, max_sequence_length) |
|
self.dropout = nn.Dropout(p=0.1) |
|
self.START_TOKEN = START_TOKEN |
|
self.END_TOKEN = END_TOKEN |
|
self.PADDING_TOKEN = PADDING_TOKEN |
|
|
|
def batch_tokenize(self, batch, start_token, end_token): |
|
|
|
def tokenize(sentence, start_token, end_token): |
|
sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)] |
|
if start_token: |
|
sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN]) |
|
if end_token: |
|
sentence_word_indicies.append(self.language_to_index[self.END_TOKEN]) |
|
for _ in range(len(sentence_word_indicies), self.max_sequence_length): |
|
sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN]) |
|
return torch.tensor(sentence_word_indicies) |
|
|
|
tokenized = [] |
|
for sentence_num in range(len(batch)): |
|
tokenized.append( tokenize(batch[sentence_num], start_token, end_token) ) |
|
tokenized = torch.stack(tokenized) |
|
return tokenized.to(get_device()) |
|
|
|
def forward(self, x, start_token, end_token): |
|
x = self.batch_tokenize(x, start_token, end_token) |
|
x = self.embedding(x) |
|
pos = self.position_encoder().to(get_device()) |
|
x = self.dropout(x + pos) |
|
return x |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_model, num_heads): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
self.qkv_layer = nn.Linear(d_model , 3 * d_model) |
|
self.linear_layer = nn.Linear(d_model, d_model) |
|
|
|
def forward(self, x, mask): |
|
batch_size, sequence_length, d_model = x.size() |
|
qkv = self.qkv_layer(x) |
|
qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim) |
|
qkv = qkv.permute(0, 2, 1, 3) |
|
q, k, v = qkv.chunk(3, dim=-1) |
|
values, attention = scaled_dot_product(q, k, v, mask) |
|
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim) |
|
out = self.linear_layer(values) |
|
return out |
|
|
|
|
|
class LayerNormalization(nn.Module): |
|
def __init__(self, parameters_shape, eps=1e-5): |
|
super().__init__() |
|
self.parameters_shape=parameters_shape |
|
self.eps=eps |
|
self.gamma = nn.Parameter(torch.ones(parameters_shape)) |
|
self.beta = nn.Parameter(torch.zeros(parameters_shape)) |
|
|
|
def forward(self, inputs): |
|
dims = [-(i + 1) for i in range(len(self.parameters_shape))] |
|
mean = inputs.mean(dim=dims, keepdim=True) |
|
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True) |
|
std = (var + self.eps).sqrt() |
|
y = (inputs - mean) / std |
|
out = self.gamma * y + self.beta |
|
return out |
|
|
|
|
|
class PositionwiseFeedForward(nn.Module): |
|
def __init__(self, d_model, hidden, drop_prob=0.1): |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.linear1 = nn.Linear(d_model, hidden) |
|
self.linear2 = nn.Linear(hidden, d_model) |
|
self.relu = nn.ReLU() |
|
self.dropout = nn.Dropout(p=drop_prob) |
|
|
|
def forward(self, x): |
|
x = self.linear1(x) |
|
x = self.relu(x) |
|
x = self.dropout(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob): |
|
super(EncoderLayer, self).__init__() |
|
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads) |
|
self.norm1 = LayerNormalization(parameters_shape=[d_model]) |
|
self.dropout1 = nn.Dropout(p=drop_prob) |
|
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob) |
|
self.norm2 = LayerNormalization(parameters_shape=[d_model]) |
|
self.dropout2 = nn.Dropout(p=drop_prob) |
|
|
|
def forward(self, x, self_attention_mask): |
|
residual_x = x.clone() |
|
x = self.attention(x, mask=self_attention_mask) |
|
x = self.dropout1(x) |
|
x = self.norm1(x + residual_x) |
|
residual_x = x.clone() |
|
x = self.ffn(x) |
|
x = self.dropout2(x) |
|
x = self.norm2(x + residual_x) |
|
return x |
|
|
|
class SequentialEncoder(nn.Sequential): |
|
def forward(self, *inputs): |
|
x, self_attention_mask = inputs |
|
for module in self._modules.values(): |
|
x = module(x, self_attention_mask) |
|
return x |
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, |
|
d_model, |
|
ffn_hidden, |
|
num_heads, |
|
drop_prob, |
|
num_layers, |
|
max_sequence_length, |
|
language_to_index, |
|
START_TOKEN, |
|
END_TOKEN, |
|
PADDING_TOKEN): |
|
super().__init__() |
|
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) |
|
self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob) |
|
for _ in range(num_layers)]) |
|
|
|
def forward(self, x, self_attention_mask, start_token, end_token): |
|
x = self.sentence_embedding(x, start_token, end_token) |
|
x = self.layers(x, self_attention_mask) |
|
return x |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
self.kv_layer = nn.Linear(d_model , 2 * d_model) |
|
self.q_layer = nn.Linear(d_model , d_model) |
|
self.linear_layer = nn.Linear(d_model, d_model) |
|
|
|
def forward(self, x, y, mask): |
|
batch_size, sequence_length, d_model = x.size() |
|
kv = self.kv_layer(x) |
|
q = self.q_layer(y) |
|
kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim) |
|
q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim) |
|
kv = kv.permute(0, 2, 1, 3) |
|
q = q.permute(0, 2, 1, 3) |
|
k, v = kv.chunk(2, dim=-1) |
|
values, attention = scaled_dot_product(q, k, v, mask) |
|
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, d_model) |
|
out = self.linear_layer(values) |
|
return out |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob): |
|
super(DecoderLayer, self).__init__() |
|
self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads) |
|
self.layer_norm1 = LayerNormalization(parameters_shape=[d_model]) |
|
self.dropout1 = nn.Dropout(p=drop_prob) |
|
|
|
self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads) |
|
self.layer_norm2 = LayerNormalization(parameters_shape=[d_model]) |
|
self.dropout2 = nn.Dropout(p=drop_prob) |
|
|
|
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob) |
|
self.layer_norm3 = LayerNormalization(parameters_shape=[d_model]) |
|
self.dropout3 = nn.Dropout(p=drop_prob) |
|
|
|
def forward(self, x, y, self_attention_mask, cross_attention_mask): |
|
_y = y.clone() |
|
y = self.self_attention(y, mask=self_attention_mask) |
|
y = self.dropout1(y) |
|
y = self.layer_norm1(y + _y) |
|
|
|
_y = y.clone() |
|
y = self.encoder_decoder_attention(x, y, mask=cross_attention_mask) |
|
y = self.dropout2(y) |
|
y = self.layer_norm2(y + _y) |
|
|
|
_y = y.clone() |
|
y = self.ffn(y) |
|
y = self.dropout3(y) |
|
y = self.layer_norm3(y + _y) |
|
return y |
|
|
|
|
|
class SequentialDecoder(nn.Sequential): |
|
def forward(self, *inputs): |
|
x, y, self_attention_mask, cross_attention_mask = inputs |
|
for module in self._modules.values(): |
|
y = module(x, y, self_attention_mask, cross_attention_mask) |
|
return y |
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, |
|
d_model, |
|
ffn_hidden, |
|
num_heads, |
|
drop_prob, |
|
num_layers, |
|
max_sequence_length, |
|
language_to_index, |
|
START_TOKEN, |
|
END_TOKEN, |
|
PADDING_TOKEN): |
|
super().__init__() |
|
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) |
|
self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(num_layers)]) |
|
|
|
def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token): |
|
y = self.sentence_embedding(y, start_token, end_token) |
|
y = self.layers(x, y, self_attention_mask, cross_attention_mask) |
|
return y |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, |
|
d_model, |
|
ffn_hidden, |
|
num_heads, |
|
drop_prob, |
|
num_layers, |
|
max_sequence_length, |
|
kn_vocab_size, |
|
english_to_index, |
|
kannada_to_index, |
|
START_TOKEN, |
|
END_TOKEN, |
|
PADDING_TOKEN |
|
): |
|
super().__init__() |
|
self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) |
|
self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, kannada_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN) |
|
self.linear = nn.Linear(d_model, kn_vocab_size) |
|
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
def forward(self, |
|
x, |
|
y, |
|
encoder_self_attention_mask=None, |
|
decoder_self_attention_mask=None, |
|
decoder_cross_attention_mask=None, |
|
enc_start_token=False, |
|
enc_end_token=False, |
|
dec_start_token=False, |
|
dec_end_token=False): |
|
x = self.encoder(x, encoder_self_attention_mask, start_token=enc_start_token, end_token=enc_end_token) |
|
out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token) |
|
out = self.linear(out) |
|
return out |