MedChat / app.py
yash001010's picture
Update app.py (#1)
88e7d80 verified
import os
import streamlit as st
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from groq import Groq
from dotenv import load_dotenv
import requests
# Initialize Streamlit page configuration
st.set_page_config(page_title="Medical Knowledge Assistant", layout="wide")
# Add API key input in sidebar
with st.sidebar:
st.header("API Key Configuration")
api_key = st.text_input("Enter your Groq API Key:", type="password")
if api_key:
os.environ['GROQ_API_KEY'] = api_key
else:
# Try loading from .env file
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if api_key:
st.success("API Key loaded from .env file")
# Check for API key before proceeding
if not api_key:
st.warning("Please enter your Groq API key in the sidebar to continue.")
st.stop()
# Initialize the app
st.title("Medical Knowledge Assistant")
# Google Drive file ID (use your own file ID)
file_id = '1lVlF8dYsNFPzrNGqn7jiJos7qX49jmi0' # Replace with your Google Drive file ID
destination_path = '/tmp/Embedded_Med_books' # Temporary location to store the vector store
# Function to download file from Google Drive
def download_from_drive(file_id, destination_path):
"""Download the vector store file from Google Drive."""
url = f'https://drive.google.com/uc?export=download&id={file_id}'
response = requests.get(url)
if response.status_code == 200:
with open(destination_path, 'wb') as f:
f.write(response.content)
return destination_path
else:
st.error("Failed to download the file from Google Drive.")
return None
# Check if the vector store file exists, and download it if necessary
if not os.path.exists(destination_path):
st.warning("Downloading the vector store from Google Drive...")
download_from_drive(file_id, destination_path)
st.success("Vector store downloaded successfully!")
# Set up embeddings
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
# Load the vector store from the downloaded file
vector_store = Chroma(
persist_directory=destination_path,
embedding_function=embeddings
)
retriever = vector_store.as_retriever(search_kwargs={'k': 1})
# Initialize Groq client
client = Groq(api_key=api_key)
# Streamlit input
query = st.text_input("Enter your medical question here:")
def query_with_groq(query, retriever):
try:
# Retrieve relevant documents
docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in docs])
# Call the Groq API with the query and context
completion = client.chat.completions.create(
model="llama3-70b-8192",
messages=[
{
"role": "system",
"content": (
"You are a knowledgeable medical assistant. For any medical term or disease, include comprehensive information covering: "
"definitions, types, historical background, major theories, known causes, and contributing risk factors. "
"Explain the genesis or theories on its origin, if applicable. Use a structured, thorough approach and keep language accessible. "
"provide symptoms, diagnosis, and treatment and post operative care , address all with indepth explanation , with specific details and step-by-step processes where relevant. "
"If the context does not adequately cover the user's question, respond with: 'I cannot provide an answer based on the available medical dataset.'"
)
},
{
"role": "system",
"content": (
"If the user asks for a medical explanation, ensure accuracy, don't include layman's terms if complex terms are used, "
"and organize responses in a structured way."
)
},
{
"role": "system",
"content": (
"When comparing two terms or conditions, provide a clear, concise, and structured comparison. Highlight key differences in their "
"definitions, symptoms, causes, diagnoses, and treatments with indepth explanation of each. If relevant, include any overlapping characteristics."
)
},
{
"role": "user",
"content": f"{context}\n\nQ: {query}\nA:"
}
],
temperature=0.7,
max_tokens=3000,
stream=True
)
# Create a placeholder for streaming response
response_container = st.empty()
response = ""
# Stream the response
for chunk in completion:
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
response_container.markdown(response)
return response
except Exception as e:
st.error(f"Error during query processing: {str(e)}")
return None
if st.button("Get Answer"):
if query:
with st.spinner("Processing your query..."):
answer = query_with_groq(query, retriever)
if answer:
st.success("Query processed successfully!")
else:
st.warning("Please enter a query.")