yangheng's picture
Create app.py
a233a6e verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
model_name = "yangheng/PlantRNA-FM"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForMaskedLM.from_pretrained(model_name)
def predict_rna(sequence):
inputs = tokenizer(sequence, return_tensors="pt")
mask_token_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1] # 找到 <mask> 的位置
with torch.no_grad():
outputs = model(**inputs)
mask_token_logits = outputs.logits[0, mask_token_index, :]
predicted_token_ids = torch.argmax(mask_token_logits, dim=-1)
predicted_tokens = tokenizer.convert_ids_to_tokens(predicted_token_ids)
return " ".join(predicted_tokens)
input_text = gr.Textbox(lines=2, placeholder="Input RNA Sequence with <mask>, e.g., AAAGAGTCATATACGATATTGTCGACCGTGG<mask>AGAGAGAAGAATGTACGATTGGAGT")
output_text = gr.Textbox()
app = gr.Interface(
fn=predict_rna,
inputs=input_text,
outputs=output_text,
title="Zero-shot PlantFM-RNA MNM Inference",
description="Zero-shot PlantFM-RNA MNM Inference: Predicts only the <mask> tokens."
)
if __name__ == "__main__":
app.launch()