Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
model_name = "yangheng/PlantRNA-FM"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
|
11 |
+
def predict_rna(sequence):
|
12 |
+
|
13 |
+
inputs = tokenizer(sequence, return_tensors="pt")
|
14 |
+
mask_token_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1] # 找到 <mask> 的位置
|
15 |
+
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
|
20 |
+
|
21 |
+
mask_token_logits = outputs.logits[0, mask_token_index, :]
|
22 |
+
predicted_token_ids = torch.argmax(mask_token_logits, dim=-1)
|
23 |
+
predicted_tokens = tokenizer.convert_ids_to_tokens(predicted_token_ids)
|
24 |
+
|
25 |
+
|
26 |
+
return " ".join(predicted_tokens)
|
27 |
+
|
28 |
+
|
29 |
+
input_text = gr.Textbox(lines=2, placeholder="Input RNA Sequence with <mask>, e.g., AAAGAGTCATATACGATATTGTCGACCGTGG<mask>AGAGAGAAGAATGTACGATTGGAGT")
|
30 |
+
output_text = gr.Textbox()
|
31 |
+
|
32 |
+
app = gr.Interface(
|
33 |
+
fn=predict_rna,
|
34 |
+
inputs=input_text,
|
35 |
+
outputs=output_text,
|
36 |
+
title="Zero-shot PlantFM-RNA MNM Inference",
|
37 |
+
description="Zero-shot PlantFM-RNA MNM Inference: Predicts only the <mask> tokens."
|
38 |
+
)
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
app.launch()
|