|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
PyTorch OpenAI GPT-2 model. |
|
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py |
|
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py |
|
""" |
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss, MSELoss |
|
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model |
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import ( |
|
Conv1D, |
|
PreTrainedModel, |
|
SequenceSummary, |
|
find_pruneable_heads_and_indices, |
|
prune_conv1d_layer, |
|
) |
|
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map |
|
|
|
|
|
_USE_GROVER = True |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "GPT2Config" |
|
_TOKENIZER_FOR_DOC = "GPT2Tokenizer" |
|
|
|
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"gpt2", |
|
"gpt2-medium", |
|
"gpt2-large", |
|
"gpt2-xl", |
|
"distilgpt2", |
|
|
|
] |
|
|
|
logger.setLevel(logging.INFO) |
|
console = logging.StreamHandler() |
|
console.setLevel(logging.INFO) |
|
logger.addHandler(console) |
|
|
|
_GPT2_ML_TF_TO_TORCH = { |
|
"LayerNorm_embed_norm": "emb_norm", |
|
"pos_embed": "wpe.weight", |
|
"word_embed": "wte.weight", |
|
"layer": "h", |
|
|
|
|
|
"LayerNorm_mlp_ln0": "ln_1", |
|
"LayerNorm_mlp_ln1": "ln_2", |
|
"intermediate": "mlp.c_fc", |
|
"output": "mlp.c_proj", |
|
"query_layer": "attn.c_attn", |
|
"key_layer": "attn.c_attn", |
|
"value_layer": "attn.c_attn", |
|
"context_projection_layer": "attn.c_proj", |
|
"gamma": "weight", |
|
"kernel": "weight", |
|
"beta": "bias", |
|
"bias": "bias", |
|
} |
|
|
|
|
|
def convert_gpt2_checkpoint_to_pytorch( |
|
gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path |
|
): |
|
|
|
if gpt2_config_file == "": |
|
config = GPT2Config() |
|
else: |
|
config = GPT2Config.from_json_file(gpt2_config_file) |
|
model = GPT2Model(config) |
|
|
|
|
|
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path) |
|
|
|
|
|
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME |
|
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME |
|
print("Save PyTorch model to {}".format(pytorch_weights_dump_path)) |
|
torch.save(model.state_dict(), pytorch_weights_dump_path) |
|
print("Save configuration file to {}".format(pytorch_config_dump_path)) |
|
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: |
|
f.write(config.to_json_string()) |
|
|
|
|
|
|
|
|
|
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model""" |
|
try: |
|
import re |
|
|
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(gpt2_checkpoint_path) |
|
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info("Loading TF weight {} with shape {}".format(name, shape)) |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array.squeeze()) |
|
|
|
import copy |
|
|
|
orig_model = copy.deepcopy(model) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name[6:] |
|
name = name.split("/") |
|
pointer = model |
|
|
|
attn_layer = "" |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+\d+", m_name): |
|
scope_names = re.split(r"(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
sname = scope_names[0] |
|
|
|
if sname == "" or sname == "embeddings": |
|
continue |
|
elif sname not in _GPT2_ML_TF_TO_TORCH: |
|
print("=========================================================") |
|
logger.info("Skip var name {}".format(scope_names)) |
|
pointer = None |
|
break |
|
else: |
|
tname = _GPT2_ML_TF_TO_TORCH[sname] |
|
if "." in tname: |
|
parent, child = tname.split(".") |
|
pointer = getattr(pointer, parent) |
|
pointer = getattr(pointer, child) |
|
else: |
|
pointer = getattr(pointer, tname) |
|
|
|
if tname == "attn.c_attn": |
|
attn_layer = sname |
|
|
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
|
|
if pointer is None: |
|
continue |
|
if attn_layer == "": |
|
try: |
|
assert pointer.shape == array.shape |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info( |
|
"Initialize PyTorch weight {}, {}, {}".format( |
|
name, array.mean(), pointer.mean() |
|
) |
|
) |
|
if attn_layer == "": |
|
pointer.data = torch.from_numpy(array) |
|
else: |
|
shape = pointer.shape |
|
d = torch.from_numpy(array) |
|
is_bias = len(shape) == 1 |
|
end = int(shape[0 if is_bias else 1] / 3) |
|
m = dict( |
|
query_layer=0, |
|
key_layer=end, |
|
value_layer=end * 2, |
|
) |
|
start = m[attn_layer] |
|
end = start + end |
|
if is_bias: |
|
pointer.data[start:end] = d |
|
else: |
|
pointer.data[:, start:end] = d |
|
logger.info( |
|
"Initialize PyTorch weight {}, {}, {}".format( |
|
name, array.mean(), pointer.mean() |
|
) |
|
) |
|
|
|
for name, params in orig_model.named_parameters(): |
|
for n, p in model.named_parameters(): |
|
if name == n: |
|
if params.equal(p): |
|
print("--------------------------") |
|
print(" %s not changed!" % n) |
|
return model |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False): |
|
super().__init__() |
|
|
|
n_state = nx |
|
|
|
assert n_state % config.n_head == 0 |
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view( |
|
1, 1, n_ctx, n_ctx |
|
), |
|
) |
|
self.register_buffer("masked_bias", torch.tensor(-1e4)) |
|
self.n_head = config.n_head |
|
self.split_size = n_state |
|
self.scale = scale |
|
self.is_cross_attention = is_cross_attention |
|
if self.is_cross_attention: |
|
self.c_attn = Conv1D(2 * n_state, nx) |
|
self.q_attn = Conv1D(n_state, nx) |
|
else: |
|
self.c_attn = Conv1D(3 * n_state, nx) |
|
self.c_proj = Conv1D(n_state, nx) |
|
self.attn_dropout = nn.Dropout(config.attn_pdrop) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads |
|
) |
|
index_attn = torch.cat( |
|
[index, index + self.split_size, index + (2 * self.split_size)] |
|
) |
|
|
|
|
|
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) |
|
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) |
|
|
|
|
|
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) |
|
self.n_head = self.n_head - len(heads) |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def _attn( |
|
self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False |
|
): |
|
w = torch.matmul(q, k) |
|
if self.scale: |
|
w = w / (float(v.size(-1)) ** 0.5) |
|
nd, ns = w.size(-2), w.size(-1) |
|
|
|
if not self.is_cross_attention: |
|
|
|
mask = self.bias[:, :, ns - nd : ns, :ns] |
|
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype)) |
|
|
|
if attention_mask is not None: |
|
|
|
w = w + attention_mask |
|
|
|
w = nn.Softmax(dim=-1)(w) |
|
w = self.attn_dropout(w) |
|
|
|
|
|
if head_mask is not None: |
|
w = w * head_mask |
|
|
|
outputs = [torch.matmul(w, v)] |
|
if output_attentions: |
|
outputs.append(w) |
|
return outputs |
|
|
|
def merge_heads(self, x): |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) |
|
return x.view(*new_x_shape) |
|
|
|
def split_heads(self, x, k=False): |
|
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) |
|
x = x.view(*new_x_shape) |
|
if k: |
|
return x.permute(0, 2, 3, 1) |
|
else: |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
layer_past=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
if encoder_hidden_states is not None: |
|
assert hasattr( |
|
self, "q_attn" |
|
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`." |
|
query = self.q_attn(hidden_states) |
|
key, value = self.c_attn(encoder_hidden_states).split( |
|
self.split_size, dim=2 |
|
) |
|
attention_mask = encoder_attention_mask |
|
else: |
|
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) |
|
|
|
query = self.split_heads(query) |
|
key = self.split_heads(key, k=True) |
|
value = self.split_heads(value) |
|
if layer_past is not None: |
|
past_key, past_value = ( |
|
layer_past[0].transpose(-2, -1), |
|
layer_past[1], |
|
) |
|
key = torch.cat((past_key, key), dim=-1) |
|
value = torch.cat((past_value, value), dim=-2) |
|
|
|
if use_cache is True: |
|
present = torch.stack( |
|
(key.transpose(-2, -1), value) |
|
) |
|
else: |
|
present = (None,) |
|
|
|
attn_outputs = self._attn( |
|
query, key, value, attention_mask, head_mask, output_attentions |
|
) |
|
a = attn_outputs[0] |
|
|
|
a = self.merge_heads(a) |
|
a = self.c_proj(a) |
|
a = self.resid_dropout(a) |
|
|
|
outputs = [a, present] + attn_outputs[1:] |
|
return outputs |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, n_state, config): |
|
super().__init__() |
|
nx = config.n_embd |
|
self.c_fc = Conv1D(n_state, nx) |
|
self.c_proj = Conv1D(nx, n_state) |
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward(self, x): |
|
h = self.act(self.c_fc(x)) |
|
h2 = self.c_proj(h) |
|
return self.dropout(h2) |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, n_ctx, config, scale=False): |
|
super().__init__() |
|
hidden_size = config.n_embd |
|
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size |
|
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
self.attn = Attention(hidden_size, n_ctx, config, scale) |
|
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
if config.add_cross_attention: |
|
self.crossattention = Attention( |
|
hidden_size, n_ctx, config, scale, is_cross_attention=True |
|
) |
|
self.ln_cross_attn = nn.LayerNorm( |
|
hidden_size, eps=config.layer_norm_epsilon |
|
) |
|
self.mlp = MLP(inner_dim, config) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
layer_past=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
attn_outputs = self.attn( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
outputs = attn_outputs[1:] |
|
|
|
hidden_states = attn_output + hidden_states |
|
|
|
if encoder_hidden_states is not None: |
|
|
|
assert hasattr( |
|
self, "crossattention" |
|
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" |
|
cross_attn_outputs = self.crossattention( |
|
self.ln_cross_attn(hidden_states), |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = cross_attn_outputs[0] |
|
|
|
hidden_states = hidden_states + attn_output |
|
outputs = ( |
|
outputs + cross_attn_outputs[2:] |
|
) |
|
|
|
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states)) |
|
|
|
hidden_states = hidden_states + feed_forward_hidden_states |
|
|
|
hidden_states = self.ln_2(hidden_states) |
|
|
|
outputs = [hidden_states] + outputs |
|
return outputs |
|
|
|
|
|
class GPT2PreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = GPT2Config |
|
load_tf_weights = load_tf_weights_in_gpt2 |
|
base_model_prefix = "transformer" |
|
is_parallelizable = True |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
@dataclass |
|
class GPT2DoubleHeadsModelOutput(ModelOutput): |
|
""" |
|
Base class for outputs of models predicting if two sentences are consecutive or not. |
|
|
|
Args: |
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided): |
|
Language modeling loss. |
|
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided): |
|
Multiple choice classification loss. |
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): |
|
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). |
|
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): |
|
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, |
|
batch_size, num_heads, sequence_length, embed_size_per_head)`). |
|
|
|
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see |
|
:obj:`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) |
|
of shape :obj:`(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs. |
|
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): |
|
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, |
|
sequence_length, sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
mc_loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
mc_logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
GPT2_START_DOCSTRING = r""" |
|
|
|
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic |
|
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, |
|
pruning heads etc.) |
|
|
|
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
|
|
Parameters: |
|
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model |
|
weights. |
|
""" |
|
|
|
GPT2_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): |
|
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else |
|
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. |
|
|
|
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be |
|
passed as ``input_ids``. |
|
|
|
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See |
|
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for |
|
details. |
|
|
|
`What are input IDs? <../glossary.html#input-ids>`__ |
|
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which |
|
have their past given to this model should not be passed as ``input_ids`` as they have already been |
|
computed. |
|
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__ |
|
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, |
|
1]``: |
|
|
|
- 0 corresponds to a `sentence A` token, |
|
- 1 corresponds to a `sentence B` token. |
|
|
|
`What are token type IDs? <../glossary.html#token-type-ids>`_ |
|
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, |
|
config.max_position_embeddings - 1]``. |
|
|
|
`What are position IDs? <../glossary.html#position-ids>`_ |
|
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): |
|
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated |
|
vectors than the model's internal embedding lookup matrix. |
|
|
|
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see |
|
:obj:`past_key_values`). |
|
use_cache (:obj:`bool`, `optional`): |
|
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up |
|
decoding (see :obj:`past_key_values`). |
|
output_attentions (:obj:`bool`, `optional`): |
|
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned |
|
tensors for more detail. |
|
output_hidden_states (:obj:`bool`, `optional`): |
|
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for |
|
more detail. |
|
return_dict (:obj:`bool`, `optional`): |
|
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. |
|
""" |
|
|
|
PARALLELIZE_DOCSTRING = r""" |
|
This is an experimental feature and is a subject to change at a moment's notice. |
|
|
|
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, |
|
it will evenly distribute blocks across all devices. |
|
|
|
Args: |
|
device_map (:obj:`Dict[int, list]`, optional, defaults to None): |
|
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always |
|
automatically mapped to the first device (for esoteric reasons). That means that the first device should |
|
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the |
|
following number of attention modules: |
|
|
|
- gpt2: 12 |
|
- gpt2-medium: 24 |
|
- gpt2-large: 36 |
|
- gpt2-xl: 48 |
|
|
|
Example:: |
|
|
|
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: |
|
model = GPT2LMHeadModel.from_pretrained('gpt2-xl') |
|
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8], |
|
|
|
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], |
|
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], |
|
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]} |
|
model.parallelize(device_map) |
|
""" |
|
DEPARALLELIZE_DOCSTRING = r""" |
|
Moves the model to cpu from a model parallel state. |
|
|
|
Example:: |
|
|
|
# On a 4 GPU machine with gpt2-large: |
|
model = GPT2LMHeadModel.from_pretrained('gpt2-large') |
|
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7], |
|
|
|
1: [8, 9, 10, 11, 12, 13, 14, 15], |
|
2: [16, 17, 18, 19, 20, 21, 22, 23], |
|
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]} |
|
model.parallelize(device_map) # Splits the model across several devices |
|
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", |
|
GPT2_START_DOCSTRING, |
|
) |
|
class GPT2Model(GPT2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.wpe = nn.Embedding(config.n_positions, config.n_embd) |
|
if _USE_GROVER: |
|
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
self.h = nn.ModuleList( |
|
[Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)] |
|
) |
|
if not _USE_GROVER: |
|
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
|
|
self.device_map = ( |
|
get_device_map(len(self.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.h)) |
|
self.model_parallel = True |
|
self.first_device = ( |
|
"cpu" |
|
if "cpu" in self.device_map.keys() |
|
else "cuda:" + str(min(self.device_map.keys())) |
|
) |
|
self.last_device = "cuda:" + str(max(self.device_map.keys())) |
|
self.wte = self.wte.to(self.first_device) |
|
self.wpe = self.wpe.to(self.first_device) |
|
|
|
for k, v in self.device_map.items(): |
|
for block in v: |
|
cuda_device = "cuda:" + str(k) |
|
self.h[block] = self.h[block].to(cuda_device) |
|
|
|
self.ln_f = self.ln_f.to(self.last_device) |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.model_parallel = False |
|
self.device_map = None |
|
self.first_device = "cpu" |
|
self.last_device = "cpu" |
|
self.wte = self.wte.to("cpu") |
|
self.wpe = self.wpe.to("cpu") |
|
for index in range(len(self.h)): |
|
self.h[index] = self.h[index].to("cpu") |
|
self.ln_f = self.ln_f.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.h[layer].attn.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint="gpt2", |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = [None] * len(self.h) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * -10000.0 |
|
|
|
|
|
|
|
if self.config.add_cross_attention and encoder_hidden_states is not None: |
|
( |
|
encoder_batch_size, |
|
encoder_sequence_length, |
|
_, |
|
) = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
position_embeds = self.wpe(position_ids) |
|
hidden_states = inputs_embeds + position_embeds |
|
|
|
if token_type_ids is not None: |
|
token_type_embeds = self.wte(token_type_ids) |
|
hidden_states = hidden_states + token_type_embeds |
|
|
|
hidden_states = self.drop(hidden_states) |
|
if _USE_GROVER: |
|
hidden_states = self.emb_norm(hidden_states) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = ( |
|
() if output_attentions and self.config.add_cross_attention else None |
|
) |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(hidden_states.device) |
|
|
|
if layer_past is not None: |
|
layer_past = tuple( |
|
past_state.to(hidden_states.device) for past_state in layer_past |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
if isinstance(head_mask, torch.Tensor): |
|
head_mask = head_mask.to(hidden_states.device) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + ( |
|
hidden_states.view(*output_shape), |
|
) |
|
|
|
if getattr(self.config, "gradient_checkpointing", False): |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return tuple( |
|
output |
|
for output in module(*inputs, use_cache, output_attentions) |
|
) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
layer_past, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states, present = outputs[:2] |
|
if use_cache is True: |
|
presents = presents + (present,) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + ( |
|
outputs[2 if use_cache else 1], |
|
) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + ( |
|
outputs[3 if use_cache else 2], |
|
) |
|
|
|
|
|
if self.model_parallel: |
|
for k, v in self.device_map.items(): |
|
if i == v[-1] and "cuda:" + str(k) != self.last_device: |
|
hidden_states = hidden_states.to("cuda:" + str(k + 1)) |
|
|
|
if not _USE_GROVER: |
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
hidden_states = hidden_states.view(*output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
GPT2_START_DOCSTRING, |
|
) |
|
class GPT2LMHeadModel(GPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.transformer = GPT2Model(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint="gpt2", |
|
output_type=CausalLMOutputWithCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to |
|
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
cross_attentions=transformer_outputs.cross_attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for |
|
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the |
|
input embeddings, the classification head takes as input the input of a specified classification token index in the |
|
input sequence). |
|
""", |
|
GPT2_START_DOCSTRING, |
|
) |
|
class GPT2DoubleHeadsModel(GPT2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
config.num_labels = 1 |
|
self.transformer = GPT2Model(config) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.multiple_choice_head = SequenceSummary(config) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings(PARALLELIZE_DOCSTRING) |
|
def parallelize(self, device_map=None): |
|
self.device_map = ( |
|
get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) |
|
if device_map is None |
|
else device_map |
|
) |
|
assert_device_map(self.device_map, len(self.transformer.h)) |
|
self.transformer.parallelize(self.device_map) |
|
self.lm_head = self.lm_head.to(self.transformer.first_device) |
|
self.multiple_choice_head = self.multiple_choice_head.to( |
|
self.transformer.first_device |
|
) |
|
self.model_parallel = True |
|
|
|
@add_start_docstrings(DEPARALLELIZE_DOCSTRING) |
|
def deparallelize(self): |
|
self.transformer.deparallelize() |
|
self.transformer = self.transformer.to("cpu") |
|
self.lm_head = self.lm_head.to("cpu") |
|
self.multiple_choice_head = self.multiple_choice_head.to("cpu") |
|
self.model_parallel = False |
|
torch.cuda.empty_cache() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
|
|
if past: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
mc_token_ids=None, |
|
labels=None, |
|
mc_labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
**kwargs, |
|
): |
|
r""" |
|
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): |
|
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - |
|
1[``. |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to |
|
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` |
|
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`): |
|
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., |
|
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see |
|
`input_ids` above) |
|
|
|
Return: |
|
|
|
Example:: |
|
|
|
>>> import torch |
|
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel |
|
|
|
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') |
|
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2') |
|
|
|
>>> # Add a [CLS] to the vocabulary (we should train it also!) |
|
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) |
|
|
|
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size |
|
|
|
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] |
|
>>> encoded_choices = [tokenizer.encode(s) for s in choices] |
|
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] |
|
|
|
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 |
|
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 |
|
|
|
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids) |
|
>>> lm_logits = outputs.lm_logits |
|
>>> mc_logits = outputs.mc_logits |
|
|
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
if self.model_parallel: |
|
torch.cuda.set_device(self.transformer.first_device) |
|
hidden_states = hidden_states.to(self.lm_head.weight.device) |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) |
|
|
|
mc_loss = None |
|
if mc_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
mc_loss = loss_fct( |
|
mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1) |
|
) |
|
lm_loss = None |
|
if labels is not None: |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits, mc_logits) + transformer_outputs[1:] |
|
if mc_loss is not None: |
|
output = (mc_loss,) + output |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return GPT2DoubleHeadsModelOutput( |
|
loss=lm_loss, |
|
mc_loss=mc_loss, |
|
logits=lm_logits, |
|
mc_logits=mc_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
""" |
|
This function is used to re-order the :obj:`past_key_values` cache if |
|
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is |
|
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. |
|
""" |
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The GPT2 Model transformer with a sequence classification head on top (linear layer). |
|
|
|
:class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as |
|
other causal models (e.g. GPT-1) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
:obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each |
|
row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot |
|
guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take |
|
the last value in each row of the batch). |
|
""", |
|
GPT2_START_DOCSTRING, |
|
) |
|
class GPT2ForSequenceClassification(GPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.transformer = GPT2Model(config) |
|
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint="microsoft/dialogrpt", |
|
output_type=SequenceClassifierOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
assert ( |
|
self.config.pad_token_id is not None or batch_size == 1 |
|
), "Cannot handle batch sizes > 1 if no padding token is defined." |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = ( |
|
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 |
|
) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[range(batch_size), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.num_labels == 1: |
|
|
|
loss_fct = MSELoss() |
|
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) |
|
else: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
pooled_logits.view(-1, self.num_labels), labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
GPT2_START_DOCSTRING, |
|
) |
|
class GPT2ForTokenClassification(GPT2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.transformer = GPT2Model(config) |
|
if ( |
|
hasattr(config, "classifier_dropout") |
|
and config.classifier_dropout is not None |
|
): |
|
classifier_dropout = config.classifier_dropout |
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
tokenizer_class=_TOKENIZER_FOR_DOC, |
|
checkpoint="microsoft/DialogRPT-updown", |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
past_key_values=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): |
|
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., |
|
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), |
|
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
if attention_mask is not None: |
|
active_loss = attention_mask.view(-1) == 1 |
|
active_logits = logits.view(-1, self.num_labels) |
|
active_labels = torch.where( |
|
active_loss, |
|
labels.view(-1), |
|
torch.tensor(loss_fct.ignore_index).type_as(labels), |
|
) |
|
loss = loss_fct(active_logits, active_labels) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + transformer_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|