Duplicate from abxhr/design-project
Browse filesCo-authored-by: Abshar Mohammed Aslam <abxhr@users.noreply.huggingface.co>
- README.md +10 -0
- app.py +38 -0
- backend/__init__.py +0 -0
- backend/aragpt.py +189 -0
- backend/home.py +20 -0
- backend/modeling_gpt2.py +1599 -0
- backend/preprocess.py +736 -0
- backend/processor.py +183 -0
- backend/qa.py +45 -0
- backend/qa_utils.py +163 -0
- backend/sa.py +36 -0
- backend/sa_utils.py +510 -0
- backend/sarcasm.py +21 -0
- backend/services.py +519 -0
- backend/utils.py +64 -0
- packages.txt +2 -0
- requirements.txt +17 -0
- test.py +10 -0
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Arabic NLP Demo
|
3 |
+
emoji: ⌨
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: true
|
9 |
+
duplicated_from: abxhr/design-project
|
10 |
+
---
|
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import awesome_streamlit as ast
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from backend.utils import get_current_ram_usage, ga
|
5 |
+
|
6 |
+
import backend.aragpt
|
7 |
+
import backend.home
|
8 |
+
import backend.processor
|
9 |
+
import backend.sa
|
10 |
+
import backend.qa
|
11 |
+
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
14 |
+
)
|
15 |
+
|
16 |
+
ga(st.__file__)
|
17 |
+
|
18 |
+
PAGES = {
|
19 |
+
"Home": backend.home,
|
20 |
+
"Arabic Sentiment Analysis": backend.sa,
|
21 |
+
"Arabic Question Answering": backend.qa,
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
st.sidebar.title("Navigation")
|
26 |
+
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
27 |
+
|
28 |
+
page = PAGES[selection]
|
29 |
+
# with st.spinner(f"Loading {selection} ..."):
|
30 |
+
ast.shared.components.write_page(page)
|
31 |
+
|
32 |
+
st.sidebar.header("Info")
|
33 |
+
st.sidebar.write("Arabic NLP by [**Abshar Mohammed Aslam** (*2019A7PS0233U*)](https://github.com/abxhr)")
|
34 |
+
|
35 |
+
st.sidebar.write("Submitted to *Dr. Sujala D. Shetty*")
|
36 |
+
# if st.sidebar.checkbox("Show RAM usage"):
|
37 |
+
# ram = get_current_ram_usage()
|
38 |
+
# st.sidebar.write("Ram usage: {:.2f}/{:.2f} GB".format(ram[0], ram[1]))
|
backend/__init__.py
ADDED
File without changes
|
backend/aragpt.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .services import TextGeneration
|
3 |
+
from tokenizers import Tokenizer
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
7 |
+
@lru_cache(maxsize=1)
|
8 |
+
def load_text_generator():
|
9 |
+
generator = TextGeneration()
|
10 |
+
generator.load()
|
11 |
+
return generator
|
12 |
+
|
13 |
+
|
14 |
+
generator = load_text_generator()
|
15 |
+
|
16 |
+
qa_prompt = """
|
17 |
+
أجب عن السؤال التالي:
|
18 |
+
"""
|
19 |
+
qa_prompt_post = """ الجواب هو """
|
20 |
+
qa_prompt_post_year = """ في سنة: """
|
21 |
+
|
22 |
+
|
23 |
+
def write():
|
24 |
+
st.markdown(
|
25 |
+
"""
|
26 |
+
<h1 style="text-align:left;">Arabic Language Generation</h1>
|
27 |
+
""",
|
28 |
+
unsafe_allow_html=True,
|
29 |
+
)
|
30 |
+
|
31 |
+
# Sidebar
|
32 |
+
|
33 |
+
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
|
34 |
+
st.sidebar.subheader("Configurable parameters")
|
35 |
+
|
36 |
+
model_name = st.sidebar.selectbox(
|
37 |
+
"Model Selector",
|
38 |
+
options=[
|
39 |
+
"AraGPT2-Base",
|
40 |
+
# "AraGPT2-Medium",
|
41 |
+
# "Aragpt2-Large",
|
42 |
+
"AraGPT2-Mega",
|
43 |
+
],
|
44 |
+
index=0,
|
45 |
+
)
|
46 |
+
|
47 |
+
max_new_tokens = st.sidebar.number_input(
|
48 |
+
"Maximum length",
|
49 |
+
min_value=0,
|
50 |
+
max_value=1024,
|
51 |
+
value=100,
|
52 |
+
help="The maximum length of the sequence to be generated.",
|
53 |
+
)
|
54 |
+
temp = st.sidebar.slider(
|
55 |
+
"Temperature",
|
56 |
+
value=1.0,
|
57 |
+
min_value=0.1,
|
58 |
+
max_value=100.0,
|
59 |
+
help="The value used to module the next token probabilities.",
|
60 |
+
)
|
61 |
+
top_k = st.sidebar.number_input(
|
62 |
+
"Top k",
|
63 |
+
value=10,
|
64 |
+
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
|
65 |
+
)
|
66 |
+
top_p = st.sidebar.number_input(
|
67 |
+
"Top p",
|
68 |
+
value=0.95,
|
69 |
+
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
|
70 |
+
)
|
71 |
+
do_sample = st.sidebar.selectbox(
|
72 |
+
"Sampling?",
|
73 |
+
(True, False),
|
74 |
+
help="Whether or not to use sampling; use greedy decoding otherwise.",
|
75 |
+
)
|
76 |
+
num_beams = st.sidebar.number_input(
|
77 |
+
"Number of beams",
|
78 |
+
min_value=1,
|
79 |
+
max_value=10,
|
80 |
+
value=3,
|
81 |
+
help="The number of beams to use for beam search.",
|
82 |
+
)
|
83 |
+
repetition_penalty = st.sidebar.number_input(
|
84 |
+
"Repetition Penalty",
|
85 |
+
min_value=0.0,
|
86 |
+
value=3.0,
|
87 |
+
step=0.1,
|
88 |
+
help="The parameter for repetition penalty. 1.0 means no penalty",
|
89 |
+
)
|
90 |
+
no_repeat_ngram_size = st.sidebar.number_input(
|
91 |
+
"No Repeat N-Gram Size",
|
92 |
+
min_value=0,
|
93 |
+
value=3,
|
94 |
+
help="If set to int > 0, all ngrams of that size can only occur once.",
|
95 |
+
)
|
96 |
+
|
97 |
+
st.write("#")
|
98 |
+
|
99 |
+
col = st.columns(2)
|
100 |
+
|
101 |
+
col[0].image("images/AraGPT2.png", width=200)
|
102 |
+
|
103 |
+
st.markdown(
|
104 |
+
"""
|
105 |
+
|
106 |
+
<h3 style="text-align:left;">AraGPT2 is GPT2 model trained from scratch on 77GB of Arabic text.</h3>
|
107 |
+
<h4 style="text-align:left;"> More details in our <a href="https://github.com/aub-mind/arabert/tree/master/aragpt2">repo</a>.</h4>
|
108 |
+
|
109 |
+
<p style="text-align:left;"><p>
|
110 |
+
<p style="text-align:left;">Use the generation paramters on the sidebar to adjust generation quality.</p>
|
111 |
+
<p style="text-align:right;"><p>
|
112 |
+
""",
|
113 |
+
unsafe_allow_html=True,
|
114 |
+
)
|
115 |
+
|
116 |
+
# col[0].write(
|
117 |
+
# "AraGPT2 is trained from screatch on 77GB of Arabic text. More details in our [repo](https://github.com/aub-mind/arabert/tree/master/aragpt2)."
|
118 |
+
# )
|
119 |
+
# st.write("## Generate Arabic Text")
|
120 |
+
|
121 |
+
st.markdown(
|
122 |
+
"""
|
123 |
+
<style>
|
124 |
+
p, div, input, label, textarea{
|
125 |
+
text-align: right;
|
126 |
+
}
|
127 |
+
</style>
|
128 |
+
""",
|
129 |
+
unsafe_allow_html=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
prompt = st.text_area(
|
133 |
+
"Prompt",
|
134 |
+
"يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال",
|
135 |
+
)
|
136 |
+
if st.button("Generate"):
|
137 |
+
with st.spinner("Generating..."):
|
138 |
+
generated_text = generator.generate(
|
139 |
+
prompt=prompt,
|
140 |
+
model_name=model_name,
|
141 |
+
max_new_tokens=max_new_tokens,
|
142 |
+
temperature=temp,
|
143 |
+
top_k=top_k,
|
144 |
+
top_p=top_p,
|
145 |
+
repetition_penalty=repetition_penalty,
|
146 |
+
do_sample=do_sample,
|
147 |
+
num_beams=num_beams,
|
148 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
149 |
+
)
|
150 |
+
st.write(generated_text)
|
151 |
+
|
152 |
+
st.markdown("---")
|
153 |
+
st.subheader("")
|
154 |
+
st.markdown(
|
155 |
+
"""
|
156 |
+
<p style="text-align:left;"><p>
|
157 |
+
<h2 style="text-align:left;">Zero-Shot Question Answering</h2>
|
158 |
+
|
159 |
+
<p style="text-align:left;">Adjust the maximum length to closely match the expected output length. Setting the Sampling paramter to False is recommended</p>
|
160 |
+
<p style="text-align:left;"><p>
|
161 |
+
""",
|
162 |
+
unsafe_allow_html=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
question = st.text_input(
|
166 |
+
"Question", "من كان رئيس ألمانيا النازية في الحرب العالمية الثانية ؟"
|
167 |
+
)
|
168 |
+
is_date = st.checkbox("Help the model: Is the answer a date?")
|
169 |
+
if st.button("Answer"):
|
170 |
+
|
171 |
+
prompt2 = qa_prompt + question + qa_prompt_post
|
172 |
+
if is_date:
|
173 |
+
prompt2 += qa_prompt_post_year
|
174 |
+
else:
|
175 |
+
prompt2 += " : "
|
176 |
+
with st.spinner("Thinking..."):
|
177 |
+
answer = generator.generate(
|
178 |
+
prompt=prompt2,
|
179 |
+
model_name=model_name,
|
180 |
+
max_new_tokens=max_new_tokens,
|
181 |
+
temperature=temp,
|
182 |
+
top_k=top_k,
|
183 |
+
top_p=top_p,
|
184 |
+
repetition_penalty=repetition_penalty,
|
185 |
+
do_sample=do_sample,
|
186 |
+
num_beams=num_beams,
|
187 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
188 |
+
)
|
189 |
+
st.write(answer)
|
backend/home.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import awesome_streamlit as ast
|
3 |
+
|
4 |
+
|
5 |
+
def write():
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
# Arabic Natural Language Processing
|
9 |
+
|
10 |
+
Design project for **Arabic Natural Language Processing**, by [**Abshar Mohammed Aslam**](https://github.com/abxhr).
|
11 |
+
"""
|
12 |
+
)
|
13 |
+
st.markdown("#")
|
14 |
+
|
15 |
+
|
16 |
+
st.markdown(
|
17 |
+
"""
|
18 |
+
|
19 |
+
"""
|
20 |
+
)
|
backend/modeling_gpt2.py
ADDED
@@ -0,0 +1,1599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""
|
18 |
+
PyTorch OpenAI GPT-2 model.
|
19 |
+
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py
|
20 |
+
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
import logging
|
25 |
+
import os
|
26 |
+
from dataclasses import dataclass
|
27 |
+
from typing import List, Optional, Tuple
|
28 |
+
|
29 |
+
import torch
|
30 |
+
import torch.nn as nn
|
31 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
32 |
+
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.file_utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from transformers.modeling_outputs import (
|
42 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
43 |
+
CausalLMOutputWithCrossAttentions,
|
44 |
+
SequenceClassifierOutputWithPast,
|
45 |
+
TokenClassifierOutput,
|
46 |
+
)
|
47 |
+
from transformers.modeling_utils import (
|
48 |
+
Conv1D,
|
49 |
+
PreTrainedModel,
|
50 |
+
SequenceSummary,
|
51 |
+
find_pruneable_heads_and_indices,
|
52 |
+
prune_conv1d_layer,
|
53 |
+
)
|
54 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
55 |
+
|
56 |
+
# THe Difference from Transformers is code under _USE_GROVER
|
57 |
+
_USE_GROVER = True
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
62 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
63 |
+
|
64 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
65 |
+
"gpt2",
|
66 |
+
"gpt2-medium",
|
67 |
+
"gpt2-large",
|
68 |
+
"gpt2-xl",
|
69 |
+
"distilgpt2",
|
70 |
+
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
71 |
+
]
|
72 |
+
|
73 |
+
logger.setLevel(logging.INFO)
|
74 |
+
console = logging.StreamHandler()
|
75 |
+
console.setLevel(logging.INFO)
|
76 |
+
logger.addHandler(console)
|
77 |
+
|
78 |
+
_GPT2_ML_TF_TO_TORCH = {
|
79 |
+
"LayerNorm_embed_norm": "emb_norm",
|
80 |
+
"pos_embed": "wpe.weight",
|
81 |
+
"word_embed": "wte.weight",
|
82 |
+
"layer": "h",
|
83 |
+
# Most importently This two layer norm must be put on the same position as gpt2-ml
|
84 |
+
# or generated data is bad, just repeat the last token
|
85 |
+
"LayerNorm_mlp_ln0": "ln_1",
|
86 |
+
"LayerNorm_mlp_ln1": "ln_2",
|
87 |
+
"intermediate": "mlp.c_fc",
|
88 |
+
"output": "mlp.c_proj",
|
89 |
+
"query_layer": "attn.c_attn",
|
90 |
+
"key_layer": "attn.c_attn",
|
91 |
+
"value_layer": "attn.c_attn",
|
92 |
+
"context_projection_layer": "attn.c_proj",
|
93 |
+
"gamma": "weight",
|
94 |
+
"kernel": "weight",
|
95 |
+
"beta": "bias",
|
96 |
+
"bias": "bias",
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
def convert_gpt2_checkpoint_to_pytorch(
|
101 |
+
gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path
|
102 |
+
):
|
103 |
+
# Construct model
|
104 |
+
if gpt2_config_file == "":
|
105 |
+
config = GPT2Config()
|
106 |
+
else:
|
107 |
+
config = GPT2Config.from_json_file(gpt2_config_file)
|
108 |
+
model = GPT2Model(config)
|
109 |
+
|
110 |
+
# Load weights from numpy
|
111 |
+
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
|
112 |
+
|
113 |
+
# Save pytorch-model
|
114 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
115 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
116 |
+
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
|
117 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
118 |
+
print("Save configuration file to {}".format(pytorch_config_dump_path))
|
119 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
120 |
+
f.write(config.to_json_string())
|
121 |
+
|
122 |
+
|
123 |
+
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './')
|
124 |
+
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597
|
125 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
126 |
+
"""Load tf checkpoints in a pytorch model"""
|
127 |
+
try:
|
128 |
+
import re
|
129 |
+
|
130 |
+
import tensorflow as tf
|
131 |
+
except ImportError:
|
132 |
+
logger.error(
|
133 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
134 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
135 |
+
)
|
136 |
+
raise
|
137 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
138 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
139 |
+
# Load weights from TF model
|
140 |
+
init_vars = tf.train.list_variables(tf_path)
|
141 |
+
names = []
|
142 |
+
arrays = []
|
143 |
+
for name, shape in init_vars:
|
144 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
145 |
+
array = tf.train.load_variable(tf_path, name)
|
146 |
+
names.append(name)
|
147 |
+
arrays.append(array.squeeze())
|
148 |
+
|
149 |
+
import copy
|
150 |
+
|
151 |
+
orig_model = copy.deepcopy(model)
|
152 |
+
|
153 |
+
for name, array in zip(names, arrays):
|
154 |
+
name = name[6:] # skip "model/"
|
155 |
+
name = name.split("/")
|
156 |
+
pointer = model
|
157 |
+
|
158 |
+
attn_layer = ""
|
159 |
+
for m_name in name:
|
160 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
161 |
+
scope_names = re.split(r"(\d+)", m_name)
|
162 |
+
else:
|
163 |
+
scope_names = [m_name]
|
164 |
+
sname = scope_names[0]
|
165 |
+
|
166 |
+
if sname == "" or sname == "embeddings":
|
167 |
+
continue
|
168 |
+
elif sname not in _GPT2_ML_TF_TO_TORCH:
|
169 |
+
print("=========================================================")
|
170 |
+
logger.info("Skip var name {}".format(scope_names))
|
171 |
+
pointer = None
|
172 |
+
break
|
173 |
+
else:
|
174 |
+
tname = _GPT2_ML_TF_TO_TORCH[sname]
|
175 |
+
if "." in tname:
|
176 |
+
parent, child = tname.split(".")
|
177 |
+
pointer = getattr(pointer, parent)
|
178 |
+
pointer = getattr(pointer, child)
|
179 |
+
else:
|
180 |
+
pointer = getattr(pointer, tname)
|
181 |
+
|
182 |
+
if tname == "attn.c_attn":
|
183 |
+
attn_layer = sname
|
184 |
+
|
185 |
+
if len(scope_names) >= 2:
|
186 |
+
num = int(scope_names[1])
|
187 |
+
pointer = pointer[num]
|
188 |
+
|
189 |
+
if pointer is None:
|
190 |
+
continue
|
191 |
+
if attn_layer == "":
|
192 |
+
try:
|
193 |
+
assert pointer.shape == array.shape
|
194 |
+
except AssertionError as e:
|
195 |
+
e.args += (pointer.shape, array.shape)
|
196 |
+
raise
|
197 |
+
logger.info(
|
198 |
+
"Initialize PyTorch weight {}, {}, {}".format(
|
199 |
+
name, array.mean(), pointer.mean()
|
200 |
+
)
|
201 |
+
)
|
202 |
+
if attn_layer == "":
|
203 |
+
pointer.data = torch.from_numpy(array)
|
204 |
+
else:
|
205 |
+
shape = pointer.shape
|
206 |
+
d = torch.from_numpy(array)
|
207 |
+
is_bias = len(shape) == 1
|
208 |
+
end = int(shape[0 if is_bias else 1] / 3)
|
209 |
+
m = dict(
|
210 |
+
query_layer=0,
|
211 |
+
key_layer=end,
|
212 |
+
value_layer=end * 2,
|
213 |
+
)
|
214 |
+
start = m[attn_layer]
|
215 |
+
end = start + end
|
216 |
+
if is_bias:
|
217 |
+
pointer.data[start:end] = d
|
218 |
+
else:
|
219 |
+
pointer.data[:, start:end] = d
|
220 |
+
logger.info(
|
221 |
+
"Initialize PyTorch weight {}, {}, {}".format(
|
222 |
+
name, array.mean(), pointer.mean()
|
223 |
+
)
|
224 |
+
)
|
225 |
+
|
226 |
+
for name, params in orig_model.named_parameters():
|
227 |
+
for n, p in model.named_parameters():
|
228 |
+
if name == n:
|
229 |
+
if params.equal(p):
|
230 |
+
print("--------------------------")
|
231 |
+
print(" %s not changed!" % n)
|
232 |
+
return model
|
233 |
+
|
234 |
+
|
235 |
+
class Attention(nn.Module):
|
236 |
+
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False):
|
237 |
+
super().__init__()
|
238 |
+
|
239 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
240 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
241 |
+
assert n_state % config.n_head == 0
|
242 |
+
self.register_buffer(
|
243 |
+
"bias",
|
244 |
+
torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(
|
245 |
+
1, 1, n_ctx, n_ctx
|
246 |
+
),
|
247 |
+
)
|
248 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
249 |
+
self.n_head = config.n_head
|
250 |
+
self.split_size = n_state
|
251 |
+
self.scale = scale
|
252 |
+
self.is_cross_attention = is_cross_attention
|
253 |
+
if self.is_cross_attention:
|
254 |
+
self.c_attn = Conv1D(2 * n_state, nx)
|
255 |
+
self.q_attn = Conv1D(n_state, nx)
|
256 |
+
else:
|
257 |
+
self.c_attn = Conv1D(3 * n_state, nx)
|
258 |
+
self.c_proj = Conv1D(n_state, nx)
|
259 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
260 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
261 |
+
self.pruned_heads = set()
|
262 |
+
|
263 |
+
def prune_heads(self, heads):
|
264 |
+
if len(heads) == 0:
|
265 |
+
return
|
266 |
+
heads, index = find_pruneable_heads_and_indices(
|
267 |
+
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
268 |
+
)
|
269 |
+
index_attn = torch.cat(
|
270 |
+
[index, index + self.split_size, index + (2 * self.split_size)]
|
271 |
+
)
|
272 |
+
|
273 |
+
# Prune conv1d layers
|
274 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
275 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
276 |
+
|
277 |
+
# Update hyper params
|
278 |
+
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
279 |
+
self.n_head = self.n_head - len(heads)
|
280 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
281 |
+
|
282 |
+
def _attn(
|
283 |
+
self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False
|
284 |
+
):
|
285 |
+
w = torch.matmul(q, k)
|
286 |
+
if self.scale:
|
287 |
+
w = w / (float(v.size(-1)) ** 0.5)
|
288 |
+
nd, ns = w.size(-2), w.size(-1)
|
289 |
+
|
290 |
+
if not self.is_cross_attention:
|
291 |
+
# if only "normal" attention layer implements causal mask
|
292 |
+
mask = self.bias[:, :, ns - nd : ns, :ns]
|
293 |
+
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype))
|
294 |
+
|
295 |
+
if attention_mask is not None:
|
296 |
+
# Apply the attention mask
|
297 |
+
w = w + attention_mask
|
298 |
+
|
299 |
+
w = nn.Softmax(dim=-1)(w)
|
300 |
+
w = self.attn_dropout(w)
|
301 |
+
|
302 |
+
# Mask heads if we want to
|
303 |
+
if head_mask is not None:
|
304 |
+
w = w * head_mask
|
305 |
+
|
306 |
+
outputs = [torch.matmul(w, v)]
|
307 |
+
if output_attentions:
|
308 |
+
outputs.append(w)
|
309 |
+
return outputs
|
310 |
+
|
311 |
+
def merge_heads(self, x):
|
312 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
313 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
314 |
+
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
315 |
+
|
316 |
+
def split_heads(self, x, k=False):
|
317 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
318 |
+
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
319 |
+
if k:
|
320 |
+
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
321 |
+
else:
|
322 |
+
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
323 |
+
|
324 |
+
def forward(
|
325 |
+
self,
|
326 |
+
hidden_states,
|
327 |
+
layer_past=None,
|
328 |
+
attention_mask=None,
|
329 |
+
head_mask=None,
|
330 |
+
encoder_hidden_states=None,
|
331 |
+
encoder_attention_mask=None,
|
332 |
+
use_cache=False,
|
333 |
+
output_attentions=False,
|
334 |
+
):
|
335 |
+
if encoder_hidden_states is not None:
|
336 |
+
assert hasattr(
|
337 |
+
self, "q_attn"
|
338 |
+
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
339 |
+
query = self.q_attn(hidden_states)
|
340 |
+
key, value = self.c_attn(encoder_hidden_states).split(
|
341 |
+
self.split_size, dim=2
|
342 |
+
)
|
343 |
+
attention_mask = encoder_attention_mask
|
344 |
+
else:
|
345 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
346 |
+
|
347 |
+
query = self.split_heads(query)
|
348 |
+
key = self.split_heads(key, k=True)
|
349 |
+
value = self.split_heads(value)
|
350 |
+
if layer_past is not None:
|
351 |
+
past_key, past_value = (
|
352 |
+
layer_past[0].transpose(-2, -1),
|
353 |
+
layer_past[1],
|
354 |
+
) # transpose back cf below
|
355 |
+
key = torch.cat((past_key, key), dim=-1)
|
356 |
+
value = torch.cat((past_value, value), dim=-2)
|
357 |
+
|
358 |
+
if use_cache is True:
|
359 |
+
present = torch.stack(
|
360 |
+
(key.transpose(-2, -1), value)
|
361 |
+
) # transpose to have same shapes for stacking
|
362 |
+
else:
|
363 |
+
present = (None,)
|
364 |
+
|
365 |
+
attn_outputs = self._attn(
|
366 |
+
query, key, value, attention_mask, head_mask, output_attentions
|
367 |
+
)
|
368 |
+
a = attn_outputs[0]
|
369 |
+
|
370 |
+
a = self.merge_heads(a)
|
371 |
+
a = self.c_proj(a)
|
372 |
+
a = self.resid_dropout(a)
|
373 |
+
|
374 |
+
outputs = [a, present] + attn_outputs[1:]
|
375 |
+
return outputs # a, present, (attentions)
|
376 |
+
|
377 |
+
|
378 |
+
class MLP(nn.Module):
|
379 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
380 |
+
super().__init__()
|
381 |
+
nx = config.n_embd
|
382 |
+
self.c_fc = Conv1D(n_state, nx)
|
383 |
+
self.c_proj = Conv1D(nx, n_state)
|
384 |
+
self.act = ACT2FN[config.activation_function]
|
385 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
386 |
+
|
387 |
+
def forward(self, x):
|
388 |
+
h = self.act(self.c_fc(x))
|
389 |
+
h2 = self.c_proj(h)
|
390 |
+
return self.dropout(h2)
|
391 |
+
|
392 |
+
|
393 |
+
class Block(nn.Module):
|
394 |
+
def __init__(self, n_ctx, config, scale=False):
|
395 |
+
super().__init__()
|
396 |
+
hidden_size = config.n_embd
|
397 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
398 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
399 |
+
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
400 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
401 |
+
if config.add_cross_attention:
|
402 |
+
self.crossattention = Attention(
|
403 |
+
hidden_size, n_ctx, config, scale, is_cross_attention=True
|
404 |
+
)
|
405 |
+
self.ln_cross_attn = nn.LayerNorm(
|
406 |
+
hidden_size, eps=config.layer_norm_epsilon
|
407 |
+
)
|
408 |
+
self.mlp = MLP(inner_dim, config)
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states,
|
413 |
+
layer_past=None,
|
414 |
+
attention_mask=None,
|
415 |
+
head_mask=None,
|
416 |
+
encoder_hidden_states=None,
|
417 |
+
encoder_attention_mask=None,
|
418 |
+
use_cache=False,
|
419 |
+
output_attentions=False,
|
420 |
+
):
|
421 |
+
attn_outputs = self.attn(
|
422 |
+
hidden_states,
|
423 |
+
layer_past=layer_past,
|
424 |
+
attention_mask=attention_mask,
|
425 |
+
head_mask=head_mask,
|
426 |
+
use_cache=use_cache,
|
427 |
+
output_attentions=output_attentions,
|
428 |
+
)
|
429 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
430 |
+
outputs = attn_outputs[1:]
|
431 |
+
# residual connection
|
432 |
+
hidden_states = attn_output + hidden_states
|
433 |
+
|
434 |
+
if encoder_hidden_states is not None:
|
435 |
+
# add one self-attention block for cross-attention
|
436 |
+
assert hasattr(
|
437 |
+
self, "crossattention"
|
438 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
439 |
+
cross_attn_outputs = self.crossattention(
|
440 |
+
self.ln_cross_attn(hidden_states),
|
441 |
+
attention_mask=attention_mask,
|
442 |
+
head_mask=head_mask,
|
443 |
+
encoder_hidden_states=encoder_hidden_states,
|
444 |
+
encoder_attention_mask=encoder_attention_mask,
|
445 |
+
output_attentions=output_attentions,
|
446 |
+
)
|
447 |
+
attn_output = cross_attn_outputs[0]
|
448 |
+
# residual connection
|
449 |
+
hidden_states = hidden_states + attn_output
|
450 |
+
outputs = (
|
451 |
+
outputs + cross_attn_outputs[2:]
|
452 |
+
) # add cross attentions if we output attention weights
|
453 |
+
|
454 |
+
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states))
|
455 |
+
# residual connection
|
456 |
+
hidden_states = hidden_states + feed_forward_hidden_states
|
457 |
+
|
458 |
+
hidden_states = self.ln_2(hidden_states)
|
459 |
+
|
460 |
+
outputs = [hidden_states] + outputs
|
461 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
462 |
+
|
463 |
+
|
464 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
465 |
+
"""
|
466 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
467 |
+
models.
|
468 |
+
"""
|
469 |
+
|
470 |
+
config_class = GPT2Config
|
471 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
472 |
+
base_model_prefix = "transformer"
|
473 |
+
is_parallelizable = True
|
474 |
+
|
475 |
+
def __init__(self, *inputs, **kwargs):
|
476 |
+
super().__init__(*inputs, **kwargs)
|
477 |
+
|
478 |
+
def _init_weights(self, module):
|
479 |
+
"""Initialize the weights."""
|
480 |
+
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
481 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
482 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
483 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
484 |
+
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
485 |
+
module.bias.data.zero_()
|
486 |
+
elif isinstance(module, nn.LayerNorm):
|
487 |
+
module.bias.data.zero_()
|
488 |
+
module.weight.data.fill_(1.0)
|
489 |
+
|
490 |
+
|
491 |
+
@dataclass
|
492 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
493 |
+
"""
|
494 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
495 |
+
|
496 |
+
Args:
|
497 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided):
|
498 |
+
Language modeling loss.
|
499 |
+
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided):
|
500 |
+
Multiple choice classification loss.
|
501 |
+
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
502 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
503 |
+
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
|
504 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
505 |
+
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
506 |
+
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2,
|
507 |
+
batch_size, num_heads, sequence_length, embed_size_per_head)`).
|
508 |
+
|
509 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
510 |
+
:obj:`past_key_values` input) to speed up sequential decoding.
|
511 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
512 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
513 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
514 |
+
|
515 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
516 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
517 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
518 |
+
sequence_length, sequence_length)`.
|
519 |
+
|
520 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
521 |
+
heads.
|
522 |
+
"""
|
523 |
+
|
524 |
+
loss: Optional[torch.FloatTensor] = None
|
525 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
526 |
+
logits: torch.FloatTensor = None
|
527 |
+
mc_logits: torch.FloatTensor = None
|
528 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
529 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
530 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
531 |
+
|
532 |
+
|
533 |
+
GPT2_START_DOCSTRING = r"""
|
534 |
+
|
535 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
536 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
537 |
+
pruning heads etc.)
|
538 |
+
|
539 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
540 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
541 |
+
general usage and behavior.
|
542 |
+
|
543 |
+
Parameters:
|
544 |
+
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
|
545 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
546 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
547 |
+
weights.
|
548 |
+
"""
|
549 |
+
|
550 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
551 |
+
Args:
|
552 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
|
553 |
+
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
|
554 |
+
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
|
555 |
+
sequence tokens in the vocabulary.
|
556 |
+
|
557 |
+
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
|
558 |
+
passed as ``input_ids``.
|
559 |
+
|
560 |
+
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
|
561 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
562 |
+
details.
|
563 |
+
|
564 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
565 |
+
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
|
566 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
567 |
+
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
|
568 |
+
have their past given to this model should not be passed as ``input_ids`` as they have already been
|
569 |
+
computed.
|
570 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
571 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
572 |
+
|
573 |
+
- 1 for tokens that are **not masked**,
|
574 |
+
- 0 for tokens that are **masked**.
|
575 |
+
|
576 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
577 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
|
578 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
579 |
+
1]``:
|
580 |
+
|
581 |
+
- 0 corresponds to a `sentence A` token,
|
582 |
+
- 1 corresponds to a `sentence B` token.
|
583 |
+
|
584 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
585 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
586 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
587 |
+
config.max_position_embeddings - 1]``.
|
588 |
+
|
589 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
590 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
591 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
592 |
+
|
593 |
+
- 1 indicates the head is **not masked**,
|
594 |
+
- 0 indicates the head is **masked**.
|
595 |
+
|
596 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
597 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
598 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
599 |
+
vectors than the model's internal embedding lookup matrix.
|
600 |
+
|
601 |
+
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
|
602 |
+
:obj:`past_key_values`).
|
603 |
+
use_cache (:obj:`bool`, `optional`):
|
604 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
605 |
+
decoding (see :obj:`past_key_values`).
|
606 |
+
output_attentions (:obj:`bool`, `optional`):
|
607 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
608 |
+
tensors for more detail.
|
609 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
610 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
611 |
+
more detail.
|
612 |
+
return_dict (:obj:`bool`, `optional`):
|
613 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
614 |
+
"""
|
615 |
+
|
616 |
+
PARALLELIZE_DOCSTRING = r"""
|
617 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
618 |
+
|
619 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
620 |
+
it will evenly distribute blocks across all devices.
|
621 |
+
|
622 |
+
Args:
|
623 |
+
device_map (:obj:`Dict[int, list]`, optional, defaults to None):
|
624 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
625 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
626 |
+
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
627 |
+
following number of attention modules:
|
628 |
+
|
629 |
+
- gpt2: 12
|
630 |
+
- gpt2-medium: 24
|
631 |
+
- gpt2-large: 36
|
632 |
+
- gpt2-xl: 48
|
633 |
+
|
634 |
+
Example::
|
635 |
+
|
636 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
637 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-xl')
|
638 |
+
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
639 |
+
|
640 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
641 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
642 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]}
|
643 |
+
model.parallelize(device_map)
|
644 |
+
"""
|
645 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
646 |
+
Moves the model to cpu from a model parallel state.
|
647 |
+
|
648 |
+
Example::
|
649 |
+
|
650 |
+
# On a 4 GPU machine with gpt2-large:
|
651 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
|
652 |
+
device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7],
|
653 |
+
|
654 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
655 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
656 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]}
|
657 |
+
model.parallelize(device_map) # Splits the model across several devices
|
658 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
659 |
+
"""
|
660 |
+
|
661 |
+
|
662 |
+
@add_start_docstrings(
|
663 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
664 |
+
GPT2_START_DOCSTRING,
|
665 |
+
)
|
666 |
+
class GPT2Model(GPT2PreTrainedModel):
|
667 |
+
def __init__(self, config):
|
668 |
+
super().__init__(config)
|
669 |
+
|
670 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
671 |
+
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
672 |
+
if _USE_GROVER:
|
673 |
+
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
674 |
+
|
675 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
676 |
+
self.h = nn.ModuleList(
|
677 |
+
[Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]
|
678 |
+
)
|
679 |
+
if not _USE_GROVER:
|
680 |
+
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
681 |
+
|
682 |
+
self.init_weights()
|
683 |
+
|
684 |
+
# Model parallel
|
685 |
+
self.model_parallel = False
|
686 |
+
self.device_map = None
|
687 |
+
|
688 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
689 |
+
def parallelize(self, device_map=None):
|
690 |
+
# Check validity of device_map
|
691 |
+
self.device_map = (
|
692 |
+
get_device_map(len(self.h), range(torch.cuda.device_count()))
|
693 |
+
if device_map is None
|
694 |
+
else device_map
|
695 |
+
)
|
696 |
+
assert_device_map(self.device_map, len(self.h))
|
697 |
+
self.model_parallel = True
|
698 |
+
self.first_device = (
|
699 |
+
"cpu"
|
700 |
+
if "cpu" in self.device_map.keys()
|
701 |
+
else "cuda:" + str(min(self.device_map.keys()))
|
702 |
+
)
|
703 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
704 |
+
self.wte = self.wte.to(self.first_device)
|
705 |
+
self.wpe = self.wpe.to(self.first_device)
|
706 |
+
# Load onto devices
|
707 |
+
for k, v in self.device_map.items():
|
708 |
+
for block in v:
|
709 |
+
cuda_device = "cuda:" + str(k)
|
710 |
+
self.h[block] = self.h[block].to(cuda_device)
|
711 |
+
# ln_f to last
|
712 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
713 |
+
|
714 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
715 |
+
def deparallelize(self):
|
716 |
+
self.model_parallel = False
|
717 |
+
self.device_map = None
|
718 |
+
self.first_device = "cpu"
|
719 |
+
self.last_device = "cpu"
|
720 |
+
self.wte = self.wte.to("cpu")
|
721 |
+
self.wpe = self.wpe.to("cpu")
|
722 |
+
for index in range(len(self.h)):
|
723 |
+
self.h[index] = self.h[index].to("cpu")
|
724 |
+
self.ln_f = self.ln_f.to("cpu")
|
725 |
+
torch.cuda.empty_cache()
|
726 |
+
|
727 |
+
def get_input_embeddings(self):
|
728 |
+
return self.wte
|
729 |
+
|
730 |
+
def set_input_embeddings(self, new_embeddings):
|
731 |
+
self.wte = new_embeddings
|
732 |
+
|
733 |
+
def _prune_heads(self, heads_to_prune):
|
734 |
+
"""
|
735 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
736 |
+
"""
|
737 |
+
for layer, heads in heads_to_prune.items():
|
738 |
+
self.h[layer].attn.prune_heads(heads)
|
739 |
+
|
740 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
741 |
+
@add_code_sample_docstrings(
|
742 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
743 |
+
checkpoint="gpt2",
|
744 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
745 |
+
config_class=_CONFIG_FOR_DOC,
|
746 |
+
)
|
747 |
+
def forward(
|
748 |
+
self,
|
749 |
+
input_ids=None,
|
750 |
+
past_key_values=None,
|
751 |
+
attention_mask=None,
|
752 |
+
token_type_ids=None,
|
753 |
+
position_ids=None,
|
754 |
+
head_mask=None,
|
755 |
+
inputs_embeds=None,
|
756 |
+
encoder_hidden_states=None,
|
757 |
+
encoder_attention_mask=None,
|
758 |
+
use_cache=None,
|
759 |
+
output_attentions=None,
|
760 |
+
output_hidden_states=None,
|
761 |
+
return_dict=None,
|
762 |
+
):
|
763 |
+
output_attentions = (
|
764 |
+
output_attentions
|
765 |
+
if output_attentions is not None
|
766 |
+
else self.config.output_attentions
|
767 |
+
)
|
768 |
+
output_hidden_states = (
|
769 |
+
output_hidden_states
|
770 |
+
if output_hidden_states is not None
|
771 |
+
else self.config.output_hidden_states
|
772 |
+
)
|
773 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
774 |
+
return_dict = (
|
775 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
776 |
+
)
|
777 |
+
|
778 |
+
if input_ids is not None and inputs_embeds is not None:
|
779 |
+
raise ValueError(
|
780 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
781 |
+
)
|
782 |
+
elif input_ids is not None:
|
783 |
+
input_shape = input_ids.size()
|
784 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
785 |
+
batch_size = input_ids.shape[0]
|
786 |
+
elif inputs_embeds is not None:
|
787 |
+
input_shape = inputs_embeds.size()[:-1]
|
788 |
+
batch_size = inputs_embeds.shape[0]
|
789 |
+
else:
|
790 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
791 |
+
|
792 |
+
if token_type_ids is not None:
|
793 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
794 |
+
if position_ids is not None:
|
795 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
796 |
+
|
797 |
+
if past_key_values is None:
|
798 |
+
past_length = 0
|
799 |
+
past_key_values = [None] * len(self.h)
|
800 |
+
else:
|
801 |
+
past_length = past_key_values[0][0].size(-2)
|
802 |
+
if position_ids is None:
|
803 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
804 |
+
position_ids = torch.arange(
|
805 |
+
past_length,
|
806 |
+
input_shape[-1] + past_length,
|
807 |
+
dtype=torch.long,
|
808 |
+
device=device,
|
809 |
+
)
|
810 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
811 |
+
|
812 |
+
# Attention mask.
|
813 |
+
if attention_mask is not None:
|
814 |
+
if batch_size <= 0:
|
815 |
+
raise ValueError("batch_size has to be defined and > 0")
|
816 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
817 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
818 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
819 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
820 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
821 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
822 |
+
attention_mask = attention_mask[:, None, None, :]
|
823 |
+
|
824 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
825 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
826 |
+
# positions we want to attend and -10000.0 for masked positions.
|
827 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
828 |
+
# effectively the same as removing these entirely.
|
829 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
830 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
831 |
+
|
832 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
833 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
834 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
835 |
+
(
|
836 |
+
encoder_batch_size,
|
837 |
+
encoder_sequence_length,
|
838 |
+
_,
|
839 |
+
) = encoder_hidden_states.size()
|
840 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
841 |
+
if encoder_attention_mask is None:
|
842 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
843 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
844 |
+
else:
|
845 |
+
encoder_attention_mask = None
|
846 |
+
|
847 |
+
# Prepare head mask if needed
|
848 |
+
# 1.0 in head_mask indicate we keep the head
|
849 |
+
# attention_probs has shape bsz x n_heads x N x N
|
850 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
851 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
852 |
+
|
853 |
+
if inputs_embeds is None:
|
854 |
+
inputs_embeds = self.wte(input_ids)
|
855 |
+
position_embeds = self.wpe(position_ids)
|
856 |
+
hidden_states = inputs_embeds + position_embeds
|
857 |
+
|
858 |
+
if token_type_ids is not None:
|
859 |
+
token_type_embeds = self.wte(token_type_ids)
|
860 |
+
hidden_states = hidden_states + token_type_embeds
|
861 |
+
|
862 |
+
hidden_states = self.drop(hidden_states)
|
863 |
+
if _USE_GROVER:
|
864 |
+
hidden_states = self.emb_norm(hidden_states)
|
865 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
866 |
+
|
867 |
+
presents = () if use_cache else None
|
868 |
+
all_self_attentions = () if output_attentions else None
|
869 |
+
all_cross_attentions = (
|
870 |
+
() if output_attentions and self.config.add_cross_attention else None
|
871 |
+
)
|
872 |
+
all_hidden_states = () if output_hidden_states else None
|
873 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
874 |
+
|
875 |
+
# Model parallel
|
876 |
+
if self.model_parallel:
|
877 |
+
torch.cuda.set_device(hidden_states.device)
|
878 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
879 |
+
if layer_past is not None:
|
880 |
+
layer_past = tuple(
|
881 |
+
past_state.to(hidden_states.device) for past_state in layer_past
|
882 |
+
)
|
883 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
884 |
+
if attention_mask is not None:
|
885 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
886 |
+
if isinstance(head_mask, torch.Tensor):
|
887 |
+
head_mask = head_mask.to(hidden_states.device)
|
888 |
+
|
889 |
+
if output_hidden_states:
|
890 |
+
all_hidden_states = all_hidden_states + (
|
891 |
+
hidden_states.view(*output_shape),
|
892 |
+
)
|
893 |
+
|
894 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
895 |
+
|
896 |
+
def create_custom_forward(module):
|
897 |
+
def custom_forward(*inputs):
|
898 |
+
# checkpointing only works with tuple returns, not with lists
|
899 |
+
return tuple(
|
900 |
+
output
|
901 |
+
for output in module(*inputs, use_cache, output_attentions)
|
902 |
+
)
|
903 |
+
|
904 |
+
return custom_forward
|
905 |
+
|
906 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
907 |
+
create_custom_forward(block),
|
908 |
+
hidden_states,
|
909 |
+
layer_past,
|
910 |
+
attention_mask,
|
911 |
+
head_mask[i],
|
912 |
+
encoder_hidden_states,
|
913 |
+
encoder_attention_mask,
|
914 |
+
)
|
915 |
+
else:
|
916 |
+
outputs = block(
|
917 |
+
hidden_states,
|
918 |
+
layer_past=layer_past,
|
919 |
+
attention_mask=attention_mask,
|
920 |
+
head_mask=head_mask[i],
|
921 |
+
encoder_hidden_states=encoder_hidden_states,
|
922 |
+
encoder_attention_mask=encoder_attention_mask,
|
923 |
+
use_cache=use_cache,
|
924 |
+
output_attentions=output_attentions,
|
925 |
+
)
|
926 |
+
|
927 |
+
hidden_states, present = outputs[:2]
|
928 |
+
if use_cache is True:
|
929 |
+
presents = presents + (present,)
|
930 |
+
|
931 |
+
if output_attentions:
|
932 |
+
all_self_attentions = all_self_attentions + (
|
933 |
+
outputs[2 if use_cache else 1],
|
934 |
+
)
|
935 |
+
if self.config.add_cross_attention:
|
936 |
+
all_cross_attentions = all_cross_attentions + (
|
937 |
+
outputs[3 if use_cache else 2],
|
938 |
+
)
|
939 |
+
|
940 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
941 |
+
if self.model_parallel:
|
942 |
+
for k, v in self.device_map.items():
|
943 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
944 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
945 |
+
|
946 |
+
if not _USE_GROVER:
|
947 |
+
hidden_states = self.ln_f(hidden_states)
|
948 |
+
|
949 |
+
hidden_states = hidden_states.view(*output_shape)
|
950 |
+
# Add last hidden state
|
951 |
+
if output_hidden_states:
|
952 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
953 |
+
|
954 |
+
if not return_dict:
|
955 |
+
return tuple(
|
956 |
+
v
|
957 |
+
for v in [
|
958 |
+
hidden_states,
|
959 |
+
presents,
|
960 |
+
all_hidden_states,
|
961 |
+
all_self_attentions,
|
962 |
+
all_cross_attentions,
|
963 |
+
]
|
964 |
+
if v is not None
|
965 |
+
)
|
966 |
+
|
967 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
968 |
+
last_hidden_state=hidden_states,
|
969 |
+
past_key_values=presents,
|
970 |
+
hidden_states=all_hidden_states,
|
971 |
+
attentions=all_self_attentions,
|
972 |
+
cross_attentions=all_cross_attentions,
|
973 |
+
)
|
974 |
+
|
975 |
+
|
976 |
+
@add_start_docstrings(
|
977 |
+
"""
|
978 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
979 |
+
embeddings).
|
980 |
+
""",
|
981 |
+
GPT2_START_DOCSTRING,
|
982 |
+
)
|
983 |
+
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
984 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
985 |
+
|
986 |
+
def __init__(self, config):
|
987 |
+
super().__init__(config)
|
988 |
+
self.transformer = GPT2Model(config)
|
989 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
990 |
+
|
991 |
+
self.init_weights()
|
992 |
+
|
993 |
+
# Model parallel
|
994 |
+
self.model_parallel = False
|
995 |
+
self.device_map = None
|
996 |
+
|
997 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
998 |
+
def parallelize(self, device_map=None):
|
999 |
+
self.device_map = (
|
1000 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1001 |
+
if device_map is None
|
1002 |
+
else device_map
|
1003 |
+
)
|
1004 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1005 |
+
self.transformer.parallelize(self.device_map)
|
1006 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1007 |
+
self.model_parallel = True
|
1008 |
+
|
1009 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1010 |
+
def deparallelize(self):
|
1011 |
+
self.transformer.deparallelize()
|
1012 |
+
self.transformer = self.transformer.to("cpu")
|
1013 |
+
self.lm_head = self.lm_head.to("cpu")
|
1014 |
+
self.model_parallel = False
|
1015 |
+
torch.cuda.empty_cache()
|
1016 |
+
|
1017 |
+
def get_output_embeddings(self):
|
1018 |
+
return self.lm_head
|
1019 |
+
|
1020 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
1021 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1022 |
+
# only last token for inputs_ids if past is defined in kwargs
|
1023 |
+
if past:
|
1024 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1025 |
+
if token_type_ids is not None:
|
1026 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1027 |
+
|
1028 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1029 |
+
position_ids = kwargs.get("position_ids", None)
|
1030 |
+
|
1031 |
+
if attention_mask is not None and position_ids is None:
|
1032 |
+
# create position_ids on the fly for batch generation
|
1033 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1034 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1035 |
+
if past:
|
1036 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1037 |
+
else:
|
1038 |
+
position_ids = None
|
1039 |
+
return {
|
1040 |
+
"input_ids": input_ids,
|
1041 |
+
"past_key_values": past,
|
1042 |
+
"use_cache": kwargs.get("use_cache"),
|
1043 |
+
"position_ids": position_ids,
|
1044 |
+
"attention_mask": attention_mask,
|
1045 |
+
"token_type_ids": token_type_ids,
|
1046 |
+
}
|
1047 |
+
|
1048 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1049 |
+
@add_code_sample_docstrings(
|
1050 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
1051 |
+
checkpoint="gpt2",
|
1052 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1053 |
+
config_class=_CONFIG_FOR_DOC,
|
1054 |
+
)
|
1055 |
+
def forward(
|
1056 |
+
self,
|
1057 |
+
input_ids=None,
|
1058 |
+
past_key_values=None,
|
1059 |
+
attention_mask=None,
|
1060 |
+
token_type_ids=None,
|
1061 |
+
position_ids=None,
|
1062 |
+
head_mask=None,
|
1063 |
+
inputs_embeds=None,
|
1064 |
+
encoder_hidden_states=None,
|
1065 |
+
encoder_attention_mask=None,
|
1066 |
+
labels=None,
|
1067 |
+
use_cache=None,
|
1068 |
+
output_attentions=None,
|
1069 |
+
output_hidden_states=None,
|
1070 |
+
return_dict=None,
|
1071 |
+
):
|
1072 |
+
r"""
|
1073 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1074 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1075 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
1076 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
1077 |
+
"""
|
1078 |
+
return_dict = (
|
1079 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
transformer_outputs = self.transformer(
|
1083 |
+
input_ids,
|
1084 |
+
past_key_values=past_key_values,
|
1085 |
+
attention_mask=attention_mask,
|
1086 |
+
token_type_ids=token_type_ids,
|
1087 |
+
position_ids=position_ids,
|
1088 |
+
head_mask=head_mask,
|
1089 |
+
inputs_embeds=inputs_embeds,
|
1090 |
+
encoder_hidden_states=encoder_hidden_states,
|
1091 |
+
encoder_attention_mask=encoder_attention_mask,
|
1092 |
+
use_cache=use_cache,
|
1093 |
+
output_attentions=output_attentions,
|
1094 |
+
output_hidden_states=output_hidden_states,
|
1095 |
+
return_dict=return_dict,
|
1096 |
+
)
|
1097 |
+
hidden_states = transformer_outputs[0]
|
1098 |
+
|
1099 |
+
# Set device for model parallelism
|
1100 |
+
if self.model_parallel:
|
1101 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1102 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1103 |
+
|
1104 |
+
lm_logits = self.lm_head(hidden_states)
|
1105 |
+
|
1106 |
+
loss = None
|
1107 |
+
if labels is not None:
|
1108 |
+
# Shift so that tokens < n predict n
|
1109 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1110 |
+
shift_labels = labels[..., 1:].contiguous()
|
1111 |
+
# Flatten the tokens
|
1112 |
+
loss_fct = CrossEntropyLoss()
|
1113 |
+
loss = loss_fct(
|
1114 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
if not return_dict:
|
1118 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1119 |
+
return ((loss,) + output) if loss is not None else output
|
1120 |
+
|
1121 |
+
return CausalLMOutputWithCrossAttentions(
|
1122 |
+
loss=loss,
|
1123 |
+
logits=lm_logits,
|
1124 |
+
past_key_values=transformer_outputs.past_key_values,
|
1125 |
+
hidden_states=transformer_outputs.hidden_states,
|
1126 |
+
attentions=transformer_outputs.attentions,
|
1127 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
@staticmethod
|
1131 |
+
def _reorder_cache(
|
1132 |
+
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1133 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1134 |
+
"""
|
1135 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
1136 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
1137 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
1138 |
+
"""
|
1139 |
+
return tuple(
|
1140 |
+
tuple(
|
1141 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1142 |
+
for past_state in layer_past
|
1143 |
+
)
|
1144 |
+
for layer_past in past
|
1145 |
+
)
|
1146 |
+
|
1147 |
+
|
1148 |
+
@add_start_docstrings(
|
1149 |
+
"""
|
1150 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
1151 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
1152 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
1153 |
+
input sequence).
|
1154 |
+
""",
|
1155 |
+
GPT2_START_DOCSTRING,
|
1156 |
+
)
|
1157 |
+
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
1158 |
+
def __init__(self, config):
|
1159 |
+
super().__init__(config)
|
1160 |
+
config.num_labels = 1
|
1161 |
+
self.transformer = GPT2Model(config)
|
1162 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1163 |
+
self.multiple_choice_head = SequenceSummary(config)
|
1164 |
+
|
1165 |
+
self.init_weights()
|
1166 |
+
|
1167 |
+
# Model parallel
|
1168 |
+
self.model_parallel = False
|
1169 |
+
self.device_map = None
|
1170 |
+
|
1171 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1172 |
+
def parallelize(self, device_map=None):
|
1173 |
+
self.device_map = (
|
1174 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1175 |
+
if device_map is None
|
1176 |
+
else device_map
|
1177 |
+
)
|
1178 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1179 |
+
self.transformer.parallelize(self.device_map)
|
1180 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1181 |
+
self.multiple_choice_head = self.multiple_choice_head.to(
|
1182 |
+
self.transformer.first_device
|
1183 |
+
)
|
1184 |
+
self.model_parallel = True
|
1185 |
+
|
1186 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1187 |
+
def deparallelize(self):
|
1188 |
+
self.transformer.deparallelize()
|
1189 |
+
self.transformer = self.transformer.to("cpu")
|
1190 |
+
self.lm_head = self.lm_head.to("cpu")
|
1191 |
+
self.multiple_choice_head = self.multiple_choice_head.to("cpu")
|
1192 |
+
self.model_parallel = False
|
1193 |
+
torch.cuda.empty_cache()
|
1194 |
+
|
1195 |
+
def get_output_embeddings(self):
|
1196 |
+
return self.lm_head
|
1197 |
+
|
1198 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
1199 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1200 |
+
# only last token for inputs_ids if past is defined in kwargs
|
1201 |
+
if past:
|
1202 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1203 |
+
if token_type_ids is not None:
|
1204 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1205 |
+
|
1206 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1207 |
+
position_ids = kwargs.get("position_ids", None)
|
1208 |
+
|
1209 |
+
if attention_mask is not None and position_ids is None:
|
1210 |
+
# create position_ids on the fly for batch generation
|
1211 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1212 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1213 |
+
if past:
|
1214 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1215 |
+
else:
|
1216 |
+
position_ids = None
|
1217 |
+
|
1218 |
+
return {
|
1219 |
+
"input_ids": input_ids,
|
1220 |
+
"past_key_values": past,
|
1221 |
+
"use_cache": kwargs.get("use_cache"),
|
1222 |
+
"position_ids": position_ids,
|
1223 |
+
"attention_mask": attention_mask,
|
1224 |
+
"token_type_ids": token_type_ids,
|
1225 |
+
}
|
1226 |
+
|
1227 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1228 |
+
@replace_return_docstrings(
|
1229 |
+
output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC
|
1230 |
+
)
|
1231 |
+
def forward(
|
1232 |
+
self,
|
1233 |
+
input_ids=None,
|
1234 |
+
past_key_values=None,
|
1235 |
+
attention_mask=None,
|
1236 |
+
token_type_ids=None,
|
1237 |
+
position_ids=None,
|
1238 |
+
head_mask=None,
|
1239 |
+
inputs_embeds=None,
|
1240 |
+
mc_token_ids=None,
|
1241 |
+
labels=None,
|
1242 |
+
mc_labels=None,
|
1243 |
+
use_cache=None,
|
1244 |
+
output_attentions=None,
|
1245 |
+
output_hidden_states=None,
|
1246 |
+
return_dict=None,
|
1247 |
+
**kwargs,
|
1248 |
+
):
|
1249 |
+
r"""
|
1250 |
+
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input):
|
1251 |
+
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) -
|
1252 |
+
1[``.
|
1253 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
1254 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1255 |
+
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to
|
1256 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
1257 |
+
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`):
|
1258 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
1259 |
+
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see
|
1260 |
+
`input_ids` above)
|
1261 |
+
|
1262 |
+
Return:
|
1263 |
+
|
1264 |
+
Example::
|
1265 |
+
|
1266 |
+
>>> import torch
|
1267 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
1268 |
+
|
1269 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
1270 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
|
1271 |
+
|
1272 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
1273 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})
|
1274 |
+
|
1275 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
|
1276 |
+
|
1277 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
1278 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
1279 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
1280 |
+
|
1281 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
1282 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
1283 |
+
|
1284 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
1285 |
+
>>> lm_logits = outputs.lm_logits
|
1286 |
+
>>> mc_logits = outputs.mc_logits
|
1287 |
+
|
1288 |
+
"""
|
1289 |
+
return_dict = (
|
1290 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
transformer_outputs = self.transformer(
|
1294 |
+
input_ids,
|
1295 |
+
past_key_values=past_key_values,
|
1296 |
+
attention_mask=attention_mask,
|
1297 |
+
token_type_ids=token_type_ids,
|
1298 |
+
position_ids=position_ids,
|
1299 |
+
head_mask=head_mask,
|
1300 |
+
inputs_embeds=inputs_embeds,
|
1301 |
+
use_cache=use_cache,
|
1302 |
+
output_attentions=output_attentions,
|
1303 |
+
output_hidden_states=output_hidden_states,
|
1304 |
+
return_dict=return_dict,
|
1305 |
+
)
|
1306 |
+
|
1307 |
+
hidden_states = transformer_outputs[0]
|
1308 |
+
|
1309 |
+
# Set device for model parallelism
|
1310 |
+
if self.model_parallel:
|
1311 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1312 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1313 |
+
|
1314 |
+
lm_logits = self.lm_head(hidden_states)
|
1315 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
1316 |
+
|
1317 |
+
mc_loss = None
|
1318 |
+
if mc_labels is not None:
|
1319 |
+
loss_fct = CrossEntropyLoss()
|
1320 |
+
mc_loss = loss_fct(
|
1321 |
+
mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)
|
1322 |
+
)
|
1323 |
+
lm_loss = None
|
1324 |
+
if labels is not None:
|
1325 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1326 |
+
shift_labels = labels[..., 1:].contiguous()
|
1327 |
+
loss_fct = CrossEntropyLoss()
|
1328 |
+
lm_loss = loss_fct(
|
1329 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
if not return_dict:
|
1333 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
1334 |
+
if mc_loss is not None:
|
1335 |
+
output = (mc_loss,) + output
|
1336 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1337 |
+
|
1338 |
+
return GPT2DoubleHeadsModelOutput(
|
1339 |
+
loss=lm_loss,
|
1340 |
+
mc_loss=mc_loss,
|
1341 |
+
logits=lm_logits,
|
1342 |
+
mc_logits=mc_logits,
|
1343 |
+
past_key_values=transformer_outputs.past_key_values,
|
1344 |
+
hidden_states=transformer_outputs.hidden_states,
|
1345 |
+
attentions=transformer_outputs.attentions,
|
1346 |
+
)
|
1347 |
+
|
1348 |
+
@staticmethod
|
1349 |
+
def _reorder_cache(
|
1350 |
+
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1351 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1352 |
+
"""
|
1353 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
1354 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
1355 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
1356 |
+
"""
|
1357 |
+
return tuple(
|
1358 |
+
tuple(
|
1359 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1360 |
+
for past_state in layer_past
|
1361 |
+
)
|
1362 |
+
for layer_past in past
|
1363 |
+
)
|
1364 |
+
|
1365 |
+
|
1366 |
+
@add_start_docstrings(
|
1367 |
+
"""
|
1368 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
1369 |
+
|
1370 |
+
:class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as
|
1371 |
+
other causal models (e.g. GPT-1) do.
|
1372 |
+
|
1373 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1374 |
+
:obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
|
1375 |
+
row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
|
1376 |
+
guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
|
1377 |
+
the last value in each row of the batch).
|
1378 |
+
""",
|
1379 |
+
GPT2_START_DOCSTRING,
|
1380 |
+
)
|
1381 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
1382 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
1383 |
+
|
1384 |
+
def __init__(self, config):
|
1385 |
+
super().__init__(config)
|
1386 |
+
self.num_labels = config.num_labels
|
1387 |
+
self.transformer = GPT2Model(config)
|
1388 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1389 |
+
|
1390 |
+
self.init_weights()
|
1391 |
+
|
1392 |
+
# Model parallel
|
1393 |
+
self.model_parallel = False
|
1394 |
+
self.device_map = None
|
1395 |
+
|
1396 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1397 |
+
@add_code_sample_docstrings(
|
1398 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
1399 |
+
checkpoint="microsoft/dialogrpt",
|
1400 |
+
output_type=SequenceClassifierOutputWithPast,
|
1401 |
+
config_class=_CONFIG_FOR_DOC,
|
1402 |
+
)
|
1403 |
+
def forward(
|
1404 |
+
self,
|
1405 |
+
input_ids=None,
|
1406 |
+
past_key_values=None,
|
1407 |
+
attention_mask=None,
|
1408 |
+
token_type_ids=None,
|
1409 |
+
position_ids=None,
|
1410 |
+
head_mask=None,
|
1411 |
+
inputs_embeds=None,
|
1412 |
+
labels=None,
|
1413 |
+
use_cache=None,
|
1414 |
+
output_attentions=None,
|
1415 |
+
output_hidden_states=None,
|
1416 |
+
return_dict=None,
|
1417 |
+
):
|
1418 |
+
r"""
|
1419 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1420 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1421 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1422 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1423 |
+
"""
|
1424 |
+
return_dict = (
|
1425 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
transformer_outputs = self.transformer(
|
1429 |
+
input_ids,
|
1430 |
+
past_key_values=past_key_values,
|
1431 |
+
attention_mask=attention_mask,
|
1432 |
+
token_type_ids=token_type_ids,
|
1433 |
+
position_ids=position_ids,
|
1434 |
+
head_mask=head_mask,
|
1435 |
+
inputs_embeds=inputs_embeds,
|
1436 |
+
use_cache=use_cache,
|
1437 |
+
output_attentions=output_attentions,
|
1438 |
+
output_hidden_states=output_hidden_states,
|
1439 |
+
return_dict=return_dict,
|
1440 |
+
)
|
1441 |
+
hidden_states = transformer_outputs[0]
|
1442 |
+
logits = self.score(hidden_states)
|
1443 |
+
|
1444 |
+
if input_ids is not None:
|
1445 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1446 |
+
else:
|
1447 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1448 |
+
|
1449 |
+
assert (
|
1450 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1451 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1452 |
+
if self.config.pad_token_id is None:
|
1453 |
+
sequence_lengths = -1
|
1454 |
+
else:
|
1455 |
+
if input_ids is not None:
|
1456 |
+
sequence_lengths = (
|
1457 |
+
torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
1458 |
+
)
|
1459 |
+
else:
|
1460 |
+
sequence_lengths = -1
|
1461 |
+
logger.warning(
|
1462 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1463 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
1467 |
+
|
1468 |
+
loss = None
|
1469 |
+
if labels is not None:
|
1470 |
+
if self.num_labels == 1:
|
1471 |
+
# We are doing regression
|
1472 |
+
loss_fct = MSELoss()
|
1473 |
+
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
1474 |
+
else:
|
1475 |
+
loss_fct = CrossEntropyLoss()
|
1476 |
+
loss = loss_fct(
|
1477 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
if not return_dict:
|
1481 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1482 |
+
return ((loss,) + output) if loss is not None else output
|
1483 |
+
|
1484 |
+
return SequenceClassifierOutputWithPast(
|
1485 |
+
loss=loss,
|
1486 |
+
logits=pooled_logits,
|
1487 |
+
past_key_values=transformer_outputs.past_key_values,
|
1488 |
+
hidden_states=transformer_outputs.hidden_states,
|
1489 |
+
attentions=transformer_outputs.attentions,
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
|
1493 |
+
@add_start_docstrings(
|
1494 |
+
"""
|
1495 |
+
GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1496 |
+
Named-Entity-Recognition (NER) tasks.
|
1497 |
+
""",
|
1498 |
+
GPT2_START_DOCSTRING,
|
1499 |
+
)
|
1500 |
+
class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
1501 |
+
def __init__(self, config):
|
1502 |
+
super().__init__(config)
|
1503 |
+
self.num_labels = config.num_labels
|
1504 |
+
|
1505 |
+
self.transformer = GPT2Model(config)
|
1506 |
+
if (
|
1507 |
+
hasattr(config, "classifier_dropout")
|
1508 |
+
and config.classifier_dropout is not None
|
1509 |
+
):
|
1510 |
+
classifier_dropout = config.classifier_dropout
|
1511 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1512 |
+
classifier_dropout = config.hidden_dropout
|
1513 |
+
else:
|
1514 |
+
classifier_dropout = 0.1
|
1515 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1516 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1517 |
+
|
1518 |
+
self.init_weights()
|
1519 |
+
|
1520 |
+
# Model parallel
|
1521 |
+
self.model_parallel = False
|
1522 |
+
self.device_map = None
|
1523 |
+
|
1524 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
1525 |
+
@add_code_sample_docstrings(
|
1526 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
1527 |
+
checkpoint="microsoft/DialogRPT-updown",
|
1528 |
+
output_type=TokenClassifierOutput,
|
1529 |
+
config_class=_CONFIG_FOR_DOC,
|
1530 |
+
)
|
1531 |
+
def forward(
|
1532 |
+
self,
|
1533 |
+
input_ids=None,
|
1534 |
+
past_key_values=None,
|
1535 |
+
attention_mask=None,
|
1536 |
+
token_type_ids=None,
|
1537 |
+
position_ids=None,
|
1538 |
+
head_mask=None,
|
1539 |
+
inputs_embeds=None,
|
1540 |
+
labels=None,
|
1541 |
+
use_cache=None,
|
1542 |
+
output_attentions=None,
|
1543 |
+
output_hidden_states=None,
|
1544 |
+
return_dict=None,
|
1545 |
+
):
|
1546 |
+
r"""
|
1547 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
1548 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
1549 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1550 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1551 |
+
"""
|
1552 |
+
return_dict = (
|
1553 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
transformer_outputs = self.transformer(
|
1557 |
+
input_ids,
|
1558 |
+
past_key_values=past_key_values,
|
1559 |
+
attention_mask=attention_mask,
|
1560 |
+
token_type_ids=token_type_ids,
|
1561 |
+
position_ids=position_ids,
|
1562 |
+
head_mask=head_mask,
|
1563 |
+
inputs_embeds=inputs_embeds,
|
1564 |
+
use_cache=use_cache,
|
1565 |
+
output_attentions=output_attentions,
|
1566 |
+
output_hidden_states=output_hidden_states,
|
1567 |
+
return_dict=return_dict,
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
hidden_states = transformer_outputs[0]
|
1571 |
+
hidden_states = self.dropout(hidden_states)
|
1572 |
+
logits = self.classifier(hidden_states)
|
1573 |
+
|
1574 |
+
loss = None
|
1575 |
+
if labels is not None:
|
1576 |
+
loss_fct = CrossEntropyLoss()
|
1577 |
+
# Only keep active parts of the loss
|
1578 |
+
if attention_mask is not None:
|
1579 |
+
active_loss = attention_mask.view(-1) == 1
|
1580 |
+
active_logits = logits.view(-1, self.num_labels)
|
1581 |
+
active_labels = torch.where(
|
1582 |
+
active_loss,
|
1583 |
+
labels.view(-1),
|
1584 |
+
torch.tensor(loss_fct.ignore_index).type_as(labels),
|
1585 |
+
)
|
1586 |
+
loss = loss_fct(active_logits, active_labels)
|
1587 |
+
else:
|
1588 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1589 |
+
|
1590 |
+
if not return_dict:
|
1591 |
+
output = (logits,) + transformer_outputs[2:]
|
1592 |
+
return ((loss,) + output) if loss is not None else output
|
1593 |
+
|
1594 |
+
return TokenClassifierOutput(
|
1595 |
+
loss=loss,
|
1596 |
+
logits=logits,
|
1597 |
+
hidden_states=transformer_outputs.hidden_states,
|
1598 |
+
attentions=transformer_outputs.attentions,
|
1599 |
+
)
|
backend/preprocess.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
from typing import List
|
5 |
+
from farasa.segmenter import FarasaSegmenter
|
6 |
+
import emoji
|
7 |
+
|
8 |
+
import pyarabic.araby as araby
|
9 |
+
|
10 |
+
ACCEPTED_MODELS = [
|
11 |
+
"bert-base-arabertv01",
|
12 |
+
"bert-base-arabert",
|
13 |
+
"bert-base-arabertv02",
|
14 |
+
"bert-base-arabertv2",
|
15 |
+
"bert-large-arabertv02",
|
16 |
+
"bert-large-arabertv2",
|
17 |
+
"araelectra-base",
|
18 |
+
"araelectra-base-discriminator",
|
19 |
+
"araelectra-base-generator",
|
20 |
+
"araelectra-base-artydiqa",
|
21 |
+
"aragpt2-base",
|
22 |
+
"aragpt2-medium",
|
23 |
+
"aragpt2-large",
|
24 |
+
"aragpt2-mega",
|
25 |
+
]
|
26 |
+
|
27 |
+
SEGMENTED_MODELS = [
|
28 |
+
"bert-base-arabert",
|
29 |
+
"bert-base-arabertv2",
|
30 |
+
"bert-large-arabertv2",
|
31 |
+
]
|
32 |
+
|
33 |
+
SECOND_GEN_MODELS = [
|
34 |
+
"bert-base-arabertv02",
|
35 |
+
"bert-base-arabertv2",
|
36 |
+
"bert-large-arabertv02",
|
37 |
+
"bert-large-arabertv2",
|
38 |
+
"araelectra-base",
|
39 |
+
"araelectra-base-discriminator",
|
40 |
+
"araelectra-base-generator",
|
41 |
+
"araelectra-base-artydiqa",
|
42 |
+
"aragpt2-base",
|
43 |
+
"aragpt2-medium",
|
44 |
+
"aragpt2-large",
|
45 |
+
"aragpt2-mega",
|
46 |
+
]
|
47 |
+
|
48 |
+
farasa_segmenter = FarasaSegmenter(interactive=True)
|
49 |
+
|
50 |
+
|
51 |
+
class ArabertPreprocessor:
|
52 |
+
"""
|
53 |
+
A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.
|
54 |
+
It also can unprocess the text ouput of the generated text
|
55 |
+
|
56 |
+
Args:
|
57 |
+
|
58 |
+
model_name (:obj:`str`): model name from the HuggingFace Models page without
|
59 |
+
the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found.
|
60 |
+
Current accepted models are:
|
61 |
+
|
62 |
+
- "bert-base-arabertv01": No farasa segmentation.
|
63 |
+
- "bert-base-arabert": with farasa segmentation.
|
64 |
+
- "bert-base-arabertv02": No farasas egmentation.
|
65 |
+
- "bert-base-arabertv2": with farasa segmentation.
|
66 |
+
- "bert-large-arabertv02": No farasas egmentation.
|
67 |
+
- "bert-large-arabertv2": with farasa segmentation.
|
68 |
+
- "araelectra-base": No farasa segmentation.
|
69 |
+
- "araelectra-base-discriminator": No farasa segmentation.
|
70 |
+
- "araelectra-base-generator": No farasa segmentation.
|
71 |
+
- "aragpt2-base": No farasa segmentation.
|
72 |
+
- "aragpt2-medium": No farasa segmentation.
|
73 |
+
- "aragpt2-large": No farasa segmentation.
|
74 |
+
- "aragpt2-mega": No farasa segmentation.
|
75 |
+
|
76 |
+
|
77 |
+
keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing.
|
78 |
+
|
79 |
+
remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts,
|
80 |
+
should be set to False when preprocessing TyDi QA.
|
81 |
+
|
82 |
+
replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls
|
83 |
+
and mentions by special tokens.
|
84 |
+
|
85 |
+
strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA,
|
86 |
+
KASRA, SUKUN, SHADDA).
|
87 |
+
|
88 |
+
strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'.
|
89 |
+
|
90 |
+
insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits
|
91 |
+
or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace
|
92 |
+
between words and numbers or numbers and words.
|
93 |
+
|
94 |
+
remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with
|
95 |
+
2 of this character.
|
96 |
+
|
97 |
+
replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02,
|
98 |
+
AraELECTRA and AraGPT2.
|
99 |
+
Set to False to force disable, and True to force enable. Replaces the "/" with "-",
|
100 |
+
since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary.
|
101 |
+
|
102 |
+
map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
|
103 |
+
AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable.
|
104 |
+
Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995".
|
105 |
+
This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation),
|
106 |
+
and fixes the issue of caused by a bug when inserting white spaces.
|
107 |
+
|
108 |
+
apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
|
109 |
+
AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable.
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
|
115 |
+
ArabertPreprocessor: A preprocessor instance
|
116 |
+
|
117 |
+
Example:
|
118 |
+
|
119 |
+
from preprocess import ArabertPreprocessor
|
120 |
+
|
121 |
+
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2")
|
122 |
+
|
123 |
+
arabert_prep.preprocess("SOME ARABIC TEXT")
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
model_name: str,
|
129 |
+
keep_emojis: bool = False,
|
130 |
+
remove_html_markup: bool = True,
|
131 |
+
replace_urls_emails_mentions: bool = True,
|
132 |
+
strip_tashkeel: bool = True,
|
133 |
+
strip_tatweel: bool = True,
|
134 |
+
insert_white_spaces: bool = True,
|
135 |
+
remove_non_digit_repetition: bool = True,
|
136 |
+
replace_slash_with_dash: bool = None,
|
137 |
+
map_hindi_numbers_to_arabic: bool = None,
|
138 |
+
apply_farasa_segmentation: bool = None,
|
139 |
+
):
|
140 |
+
|
141 |
+
model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "")
|
142 |
+
|
143 |
+
if model_name not in ACCEPTED_MODELS:
|
144 |
+
logging.warning(
|
145 |
+
"""Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor"""
|
146 |
+
)
|
147 |
+
self.model_name = "bert-base-arabertv02"
|
148 |
+
else:
|
149 |
+
self.model_name = model_name
|
150 |
+
|
151 |
+
if apply_farasa_segmentation is None:
|
152 |
+
if self.model_name in SEGMENTED_MODELS:
|
153 |
+
self.apply_farasa_segmentation = True
|
154 |
+
else:
|
155 |
+
self.apply_farasa_segmentation = False
|
156 |
+
else:
|
157 |
+
if (
|
158 |
+
apply_farasa_segmentation == False
|
159 |
+
and self.model_name in SEGMENTED_MODELS
|
160 |
+
):
|
161 |
+
logging.warning(
|
162 |
+
"The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!"
|
163 |
+
)
|
164 |
+
|
165 |
+
self.apply_farasa_segmentation = apply_farasa_segmentation
|
166 |
+
|
167 |
+
self.keep_emojis = keep_emojis
|
168 |
+
self.remove_html_markup = remove_html_markup
|
169 |
+
self.replace_urls_emails_mentions = replace_urls_emails_mentions
|
170 |
+
self.strip_tashkeel = strip_tashkeel
|
171 |
+
self.strip_tatweel = strip_tatweel
|
172 |
+
self.insert_white_spaces = insert_white_spaces
|
173 |
+
self.remove_non_digit_repetition = remove_non_digit_repetition
|
174 |
+
|
175 |
+
if replace_slash_with_dash is None:
|
176 |
+
if self.model_name in SECOND_GEN_MODELS:
|
177 |
+
self.replace_slash_with_dash = True
|
178 |
+
else:
|
179 |
+
self.replace_slash_with_dash = False
|
180 |
+
else:
|
181 |
+
self.replace_slash_with_dash = replace_slash_with_dash
|
182 |
+
|
183 |
+
if map_hindi_numbers_to_arabic is None:
|
184 |
+
if self.model_name in SECOND_GEN_MODELS:
|
185 |
+
self.map_hindi_numbers_to_arabic = True
|
186 |
+
else:
|
187 |
+
self.map_hindi_numbers_to_arabic = False
|
188 |
+
else:
|
189 |
+
self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic
|
190 |
+
|
191 |
+
def preprocess(self, text: str) -> str:
|
192 |
+
"""
|
193 |
+
Preprocess takes an input text line an applies the same preprocessing used in AraBERT
|
194 |
+
pretraining, or according to settings
|
195 |
+
|
196 |
+
Args:
|
197 |
+
|
198 |
+
text (:obj:`str`): inout text string
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
|
202 |
+
string: A preprocessed string depending on which model was selected
|
203 |
+
"""
|
204 |
+
if (
|
205 |
+
self.model_name == "bert-base-arabert"
|
206 |
+
or self.model_name == "bert-base-arabertv01"
|
207 |
+
):
|
208 |
+
return self._preprocess_v1(
|
209 |
+
text,
|
210 |
+
do_farasa_tokenization=self.apply_farasa_segmentation,
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.model_name in SECOND_GEN_MODELS:
|
214 |
+
return self._preprocess_v2(text)
|
215 |
+
|
216 |
+
return self._preprocess_v3(text)
|
217 |
+
|
218 |
+
def unpreprocess(self, text: str, desegment: bool = True) -> str:
|
219 |
+
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
|
220 |
+
The objective is to make the generated text of any model appear natural and not preprocessed.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
text (:obj:`str`): input text to be un-preprocessed
|
224 |
+
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
str: The unpreprocessed (and possibly Farasa-desegmented) text.
|
228 |
+
"""
|
229 |
+
|
230 |
+
if self.apply_farasa_segmentation and desegment:
|
231 |
+
text = self.desegment(text)
|
232 |
+
|
233 |
+
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
|
234 |
+
# https://stackoverflow.com/a/53436792/5381220
|
235 |
+
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
|
236 |
+
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
|
237 |
+
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
|
238 |
+
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
|
239 |
+
|
240 |
+
# during generation, sometimes the models don't put a space after the dot, this handles it
|
241 |
+
text = text.replace(".", " . ")
|
242 |
+
text = " ".join(text.split())
|
243 |
+
|
244 |
+
# handle decimals
|
245 |
+
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
|
246 |
+
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
|
247 |
+
|
248 |
+
text = re.sub(left_and_right_spaced_chars, r"\1", text)
|
249 |
+
text = re.sub(left_spaced_chars, r"\1", text)
|
250 |
+
text = re.sub(right_spaced_chars, r"\1", text)
|
251 |
+
|
252 |
+
return text
|
253 |
+
|
254 |
+
def desegment(self, text: str) -> str:
|
255 |
+
"""
|
256 |
+
Use this function if sentence tokenization was done using
|
257 |
+
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
|
258 |
+
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
|
259 |
+
and after before the '+' for suffixes
|
260 |
+
|
261 |
+
Example:
|
262 |
+
>>> desegment('ال+ دراس +ات')
|
263 |
+
الدراسات
|
264 |
+
"""
|
265 |
+
text = text.replace("+ ", "+")
|
266 |
+
text = text.replace(" +", "+")
|
267 |
+
text = " ".join([self._desegmentword(word) for word in text.split(" ")])
|
268 |
+
return text
|
269 |
+
|
270 |
+
def _desegmentword(self, orig_word: str) -> str:
|
271 |
+
"""
|
272 |
+
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
|
273 |
+
|
274 |
+
Example:
|
275 |
+
>>> _desegmentword("ال+يومي+ة")
|
276 |
+
اليومية
|
277 |
+
"""
|
278 |
+
word = orig_word.replace("ل+ال+", "لل")
|
279 |
+
if "ال+ال" not in orig_word:
|
280 |
+
word = word.replace("ل+ال", "لل")
|
281 |
+
word = word.replace("+", "")
|
282 |
+
word = word.replace("للل", "لل")
|
283 |
+
return word
|
284 |
+
|
285 |
+
def _preprocess_v3(self, text: str) -> str:
|
286 |
+
text = str(text)
|
287 |
+
text = html.unescape(text)
|
288 |
+
if self.strip_tashkeel:
|
289 |
+
text = araby.strip_tashkeel(text)
|
290 |
+
if self.strip_tatweel:
|
291 |
+
text = araby.strip_tatweel(text)
|
292 |
+
|
293 |
+
if self.replace_urls_emails_mentions:
|
294 |
+
# replace all possible URLs
|
295 |
+
for reg in url_regexes:
|
296 |
+
text = re.sub(reg, " [رابط] ", text)
|
297 |
+
# REplace Emails with [بريد]
|
298 |
+
for reg in email_regexes:
|
299 |
+
text = re.sub(reg, " [بريد] ", text)
|
300 |
+
# replace mentions with [مستخدم]
|
301 |
+
text = re.sub(user_mention_regex, " [مستخدم] ", text)
|
302 |
+
|
303 |
+
if self.remove_html_markup:
|
304 |
+
# remove html line breaks
|
305 |
+
text = re.sub("<br />", " ", text)
|
306 |
+
# remove html markup
|
307 |
+
text = re.sub("</?[^>]+>", " ", text)
|
308 |
+
|
309 |
+
if self.map_hindi_numbers_to_arabic:
|
310 |
+
text = text.translate(hindi_to_arabic_map)
|
311 |
+
|
312 |
+
# remove repeated characters >2
|
313 |
+
if self.remove_non_digit_repetition:
|
314 |
+
text = self._remove_non_digit_repetition(text)
|
315 |
+
|
316 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
317 |
+
if self.insert_white_spaces:
|
318 |
+
text = re.sub(
|
319 |
+
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])",
|
320 |
+
r" \1 ",
|
321 |
+
text,
|
322 |
+
)
|
323 |
+
|
324 |
+
# re-fix brackets
|
325 |
+
text = text.replace("[ رابط ]", "[رابط]")
|
326 |
+
text = text.replace("[ بريد ]", "[بريد]")
|
327 |
+
text = text.replace("[ مستخدم ]", "[مستخدم]")
|
328 |
+
|
329 |
+
# insert whitespace between words and numbers or numbers and words
|
330 |
+
text = re.sub(
|
331 |
+
"(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)",
|
332 |
+
r" \1 \2 ",
|
333 |
+
text,
|
334 |
+
)
|
335 |
+
text = re.sub(
|
336 |
+
"([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)",
|
337 |
+
r" \1 \2 ",
|
338 |
+
text,
|
339 |
+
)
|
340 |
+
|
341 |
+
# remove unwanted characters
|
342 |
+
if self.keep_emojis:
|
343 |
+
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
|
344 |
+
rejected_chars_regex2 = "[^%s%s]" % (chars_regexv2, emoji_regex)
|
345 |
+
text = re.sub(rejected_chars_regex2, " ", text)
|
346 |
+
else:
|
347 |
+
text = re.sub(rejected_chars_regexv2, " ", text)
|
348 |
+
|
349 |
+
# remove extra spaces
|
350 |
+
text = " ".join(text.replace("\uFE0F", "").split())
|
351 |
+
|
352 |
+
if self.apply_farasa_segmentation:
|
353 |
+
if self.keep_emojis:
|
354 |
+
new_text = []
|
355 |
+
for word in text.split():
|
356 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
357 |
+
new_text.append(word)
|
358 |
+
else:
|
359 |
+
new_text.append(farasa_segmenter.segment(word))
|
360 |
+
text = " ".join(new_text)
|
361 |
+
else:
|
362 |
+
text = farasa_segmenter.segment(text)
|
363 |
+
return self._farasa_segment(text)
|
364 |
+
|
365 |
+
# ALl the other models dont require Farasa Segmentation
|
366 |
+
return text
|
367 |
+
|
368 |
+
def _preprocess_v2(self, text: str) -> str:
|
369 |
+
text = str(text)
|
370 |
+
text = html.unescape(text)
|
371 |
+
if self.strip_tashkeel:
|
372 |
+
text = araby.strip_tashkeel(text)
|
373 |
+
if self.strip_tatweel:
|
374 |
+
text = araby.strip_tatweel(text)
|
375 |
+
|
376 |
+
if self.replace_urls_emails_mentions:
|
377 |
+
# replace all possible URLs
|
378 |
+
for reg in url_regexes:
|
379 |
+
text = re.sub(reg, " [رابط] ", text)
|
380 |
+
# REplace Emails with [بريد]
|
381 |
+
for reg in email_regexes:
|
382 |
+
text = re.sub(reg, " [بريد] ", text)
|
383 |
+
# replace mentions with [مستخدم]
|
384 |
+
text = re.sub(user_mention_regex, " [مستخدم] ", text)
|
385 |
+
|
386 |
+
if self.remove_html_markup:
|
387 |
+
# remove html line breaks
|
388 |
+
text = re.sub("<br />", " ", text)
|
389 |
+
# remove html markup
|
390 |
+
text = re.sub("</?[^>]+>", " ", text)
|
391 |
+
|
392 |
+
if self.map_hindi_numbers_to_arabic:
|
393 |
+
text = text.translate(hindi_to_arabic_map)
|
394 |
+
|
395 |
+
# remove repeated characters >2
|
396 |
+
if self.remove_non_digit_repetition:
|
397 |
+
text = self._remove_non_digit_repetition(text)
|
398 |
+
|
399 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
400 |
+
if self.insert_white_spaces:
|
401 |
+
text = re.sub(
|
402 |
+
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])",
|
403 |
+
r" \1 ",
|
404 |
+
text,
|
405 |
+
)
|
406 |
+
|
407 |
+
# insert whitespace between words and numbers or numbers and words
|
408 |
+
text = re.sub(
|
409 |
+
"(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text
|
410 |
+
)
|
411 |
+
text = re.sub(
|
412 |
+
"([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text
|
413 |
+
)
|
414 |
+
|
415 |
+
if self.replace_slash_with_dash:
|
416 |
+
text = text.replace("/", "-")
|
417 |
+
|
418 |
+
# remove unwanted characters
|
419 |
+
if self.keep_emojis:
|
420 |
+
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
|
421 |
+
rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex)
|
422 |
+
text = re.sub(rejected_chars_regex2, " ", text)
|
423 |
+
else:
|
424 |
+
text = re.sub(rejected_chars_regex, " ", text)
|
425 |
+
|
426 |
+
# remove extra spaces
|
427 |
+
text = " ".join(text.replace("\uFE0F", "").split())
|
428 |
+
|
429 |
+
if (
|
430 |
+
self.model_name == "bert-base-arabertv2"
|
431 |
+
or self.model_name == "bert-large-arabertv2"
|
432 |
+
):
|
433 |
+
if self.keep_emojis:
|
434 |
+
new_text = []
|
435 |
+
for word in text.split():
|
436 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
437 |
+
new_text.append(word)
|
438 |
+
else:
|
439 |
+
new_text.append(farasa_segmenter.segment(word))
|
440 |
+
text = " ".join(new_text)
|
441 |
+
else:
|
442 |
+
text = farasa_segmenter.segment(text)
|
443 |
+
return self._farasa_segment(text)
|
444 |
+
|
445 |
+
# ALl the other models dont require Farasa Segmentation
|
446 |
+
return text
|
447 |
+
|
448 |
+
def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str:
|
449 |
+
"""
|
450 |
+
AraBERTv1 preprocessing Function
|
451 |
+
"""
|
452 |
+
text = str(text)
|
453 |
+
if self.strip_tashkeel:
|
454 |
+
text = araby.strip_tashkeel(text)
|
455 |
+
|
456 |
+
text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text)
|
457 |
+
text = re.sub("ـ", "", text)
|
458 |
+
text = re.sub("[«»]", ' " ', text)
|
459 |
+
|
460 |
+
if self.replace_urls_emails_mentions:
|
461 |
+
# replace the [رابط] token with space if you want to clean links
|
462 |
+
text = re.sub(regex_url_step1, "[رابط]", text)
|
463 |
+
text = re.sub(regex_url_step2, "[رابط]", text)
|
464 |
+
text = re.sub(regex_url, "[رابط]", text)
|
465 |
+
text = re.sub(regex_email, "[بريد]", text)
|
466 |
+
text = re.sub(regex_mention, "[مستخدم]", text)
|
467 |
+
text = re.sub("…", r"\.", text).strip()
|
468 |
+
text = self._remove_redundant_punct(text)
|
469 |
+
|
470 |
+
if self.replace_urls_emails_mentions:
|
471 |
+
text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text)
|
472 |
+
text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text)
|
473 |
+
text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text)
|
474 |
+
|
475 |
+
if self.remove_non_digit_repetition:
|
476 |
+
text = self._remove_non_digit_repetition(text)
|
477 |
+
|
478 |
+
if self.insert_white_spaces:
|
479 |
+
text = re.sub(
|
480 |
+
"([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])",
|
481 |
+
r" \1 ",
|
482 |
+
text,
|
483 |
+
)
|
484 |
+
if do_farasa_tokenization:
|
485 |
+
text = self._tokenize_arabic_words_farasa(text)
|
486 |
+
|
487 |
+
text = " ".join(text.split())
|
488 |
+
|
489 |
+
return text
|
490 |
+
|
491 |
+
def _farasa_segment(self, text: str) -> str:
|
492 |
+
line_farasa = text.split()
|
493 |
+
segmented_line = []
|
494 |
+
for index, word in enumerate(line_farasa):
|
495 |
+
if word in ["[", "]"]:
|
496 |
+
continue
|
497 |
+
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
|
498 |
+
"[",
|
499 |
+
"]",
|
500 |
+
]:
|
501 |
+
segmented_line.append("[" + word + "]")
|
502 |
+
continue
|
503 |
+
if "+" not in word:
|
504 |
+
segmented_line.append(word)
|
505 |
+
continue
|
506 |
+
segmented_word = self._split_farasa_output(word)
|
507 |
+
segmented_line.extend(segmented_word)
|
508 |
+
|
509 |
+
return " ".join(segmented_line)
|
510 |
+
|
511 |
+
def _split_farasa_output(self, word: str) -> str:
|
512 |
+
segmented_word = []
|
513 |
+
temp_token = ""
|
514 |
+
for i, c in enumerate(word):
|
515 |
+
if c == "+":
|
516 |
+
# if the token is KAF, it could be a suffix or prefix
|
517 |
+
if temp_token == "ك":
|
518 |
+
# if we are at the second token, then KAF is surely a prefix
|
519 |
+
if i == 1:
|
520 |
+
segmented_word.append(temp_token + "+")
|
521 |
+
temp_token = ""
|
522 |
+
# If the KAF token is between 2 tokens
|
523 |
+
elif word[i - 2] == "+":
|
524 |
+
# if the previous token is prefix, then this KAF must be a prefix
|
525 |
+
if segmented_word[-1][-1] == "+":
|
526 |
+
segmented_word.append(temp_token + "+")
|
527 |
+
temp_token = ""
|
528 |
+
# else it is a suffix, this KAF could not be a second suffix
|
529 |
+
else:
|
530 |
+
segmented_word.append("+" + temp_token)
|
531 |
+
temp_token = ""
|
532 |
+
# if Kaf is at the end, this is handled with the statement after the loop
|
533 |
+
elif temp_token in prefix_list:
|
534 |
+
segmented_word.append(temp_token + "+")
|
535 |
+
temp_token = ""
|
536 |
+
elif temp_token in suffix_list:
|
537 |
+
segmented_word.append("+" + temp_token)
|
538 |
+
temp_token = ""
|
539 |
+
else:
|
540 |
+
segmented_word.append(temp_token)
|
541 |
+
temp_token = ""
|
542 |
+
continue
|
543 |
+
temp_token += c
|
544 |
+
if temp_token != "":
|
545 |
+
if temp_token in suffix_list:
|
546 |
+
segmented_word.append("+" + temp_token)
|
547 |
+
else:
|
548 |
+
segmented_word.append(temp_token)
|
549 |
+
return segmented_word
|
550 |
+
|
551 |
+
def _tokenize_arabic_words_farasa(self, line_input: str) -> str:
|
552 |
+
|
553 |
+
if self.keep_emojis:
|
554 |
+
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
|
555 |
+
line_farasa = []
|
556 |
+
for word in line_input.split():
|
557 |
+
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
|
558 |
+
line_farasa.append(word)
|
559 |
+
else:
|
560 |
+
line_farasa.append(farasa_segmenter.segment(word))
|
561 |
+
else:
|
562 |
+
line_farasa = farasa_segmenter.segment(line_input).split()
|
563 |
+
|
564 |
+
segmented_line = []
|
565 |
+
for index, word in enumerate(line_farasa):
|
566 |
+
if word in ["[", "]"]:
|
567 |
+
continue
|
568 |
+
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
|
569 |
+
"[",
|
570 |
+
"]",
|
571 |
+
]:
|
572 |
+
segmented_line.append("[" + word + "]")
|
573 |
+
continue
|
574 |
+
segmented_word = []
|
575 |
+
for token in word.split("+"):
|
576 |
+
if token in prefix_list:
|
577 |
+
segmented_word.append(token + "+")
|
578 |
+
elif token in suffix_list:
|
579 |
+
segmented_word.append("+" + token)
|
580 |
+
else:
|
581 |
+
segmented_word.append(token)
|
582 |
+
segmented_line.extend(segmented_word)
|
583 |
+
return " ".join(segmented_line)
|
584 |
+
|
585 |
+
def _remove_non_digit_repetition(self, text: str) -> str:
|
586 |
+
"""
|
587 |
+
:param text: the input text to remove elongation
|
588 |
+
:return: delongated text
|
589 |
+
"""
|
590 |
+
# loop over the number of times the regex matched the text
|
591 |
+
# OLD
|
592 |
+
# for index_ in range(len(re.findall(regex_tatweel, text))):
|
593 |
+
# elongation = re.search(regex_tatweel, text)
|
594 |
+
# if elongation:
|
595 |
+
# elongation_pattern = elongation.group()
|
596 |
+
# elongation_replacement = elongation_pattern[0]
|
597 |
+
# elongation_pattern = re.escape(elongation_pattern)
|
598 |
+
# text = re.sub(
|
599 |
+
# elongation_pattern, elongation_replacement, text, flags=re.MULTILINE
|
600 |
+
# )
|
601 |
+
# else:
|
602 |
+
# break
|
603 |
+
|
604 |
+
# New
|
605 |
+
text = multiple_char_pattern.sub(r"\1\1", text)
|
606 |
+
return text
|
607 |
+
|
608 |
+
def _remove_redundant_punct(self, text: str) -> str:
|
609 |
+
text_ = text
|
610 |
+
result = re.search(redundant_punct_pattern, text)
|
611 |
+
dif = 0
|
612 |
+
while result:
|
613 |
+
sub = result.group()
|
614 |
+
sub = sorted(set(sub), key=sub.index)
|
615 |
+
sub = " " + "".join(list(sub)) + " "
|
616 |
+
text = "".join(
|
617 |
+
(text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])
|
618 |
+
)
|
619 |
+
text_ = "".join(
|
620 |
+
(text_[: result.span()[0]], text_[result.span()[1] :])
|
621 |
+
).strip()
|
622 |
+
dif = abs(len(text) - len(text_))
|
623 |
+
result = re.search(redundant_punct_pattern, text_)
|
624 |
+
text = re.sub(r"\s+", " ", text)
|
625 |
+
return text.strip()
|
626 |
+
|
627 |
+
|
628 |
+
prefix_list = [
|
629 |
+
"ال",
|
630 |
+
"و",
|
631 |
+
"ف",
|
632 |
+
"ب",
|
633 |
+
"ك",
|
634 |
+
"ل",
|
635 |
+
"لل",
|
636 |
+
"\u0627\u0644",
|
637 |
+
"\u0648",
|
638 |
+
"\u0641",
|
639 |
+
"\u0628",
|
640 |
+
"\u0643",
|
641 |
+
"\u0644",
|
642 |
+
"\u0644\u0644",
|
643 |
+
"س",
|
644 |
+
]
|
645 |
+
suffix_list = [
|
646 |
+
"ه",
|
647 |
+
"ها",
|
648 |
+
"ك",
|
649 |
+
"ي",
|
650 |
+
"هما",
|
651 |
+
"كما",
|
652 |
+
"نا",
|
653 |
+
"كم",
|
654 |
+
"هم",
|
655 |
+
"هن",
|
656 |
+
"كن",
|
657 |
+
"ا",
|
658 |
+
"ان",
|
659 |
+
"ين",
|
660 |
+
"ون",
|
661 |
+
"وا",
|
662 |
+
"ات",
|
663 |
+
"ت",
|
664 |
+
"ن",
|
665 |
+
"ة",
|
666 |
+
"\u0647",
|
667 |
+
"\u0647\u0627",
|
668 |
+
"\u0643",
|
669 |
+
"\u064a",
|
670 |
+
"\u0647\u0645\u0627",
|
671 |
+
"\u0643\u0645\u0627",
|
672 |
+
"\u0646\u0627",
|
673 |
+
"\u0643\u0645",
|
674 |
+
"\u0647\u0645",
|
675 |
+
"\u0647\u0646",
|
676 |
+
"\u0643\u0646",
|
677 |
+
"\u0627",
|
678 |
+
"\u0627\u0646",
|
679 |
+
"\u064a\u0646",
|
680 |
+
"\u0648\u0646",
|
681 |
+
"\u0648\u0627",
|
682 |
+
"\u0627\u062a",
|
683 |
+
"\u062a",
|
684 |
+
"\u0646",
|
685 |
+
"\u0629",
|
686 |
+
]
|
687 |
+
other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"]
|
688 |
+
|
689 |
+
# the never_split list is ussed with the transformers library
|
690 |
+
prefix_symbols = [x + "+" for x in prefix_list]
|
691 |
+
suffix_symblos = ["+" + x for x in suffix_list]
|
692 |
+
never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))
|
693 |
+
|
694 |
+
url_regexes = [
|
695 |
+
r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)",
|
696 |
+
r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS",
|
697 |
+
r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+",
|
698 |
+
r"www[a-zA-Z0-9_\-?=%&/.~]+",
|
699 |
+
r"[a-zA-Z]+\.com",
|
700 |
+
r"(?=http)[^\s]+",
|
701 |
+
r"(?=www)[^\s]+",
|
702 |
+
r"://",
|
703 |
+
]
|
704 |
+
user_mention_regex = r"@[\w\d]+"
|
705 |
+
email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"]
|
706 |
+
redundant_punct_pattern = (
|
707 |
+
r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})"
|
708 |
+
)
|
709 |
+
|
710 |
+
regex_tatweel = r"(\D)\1{2,}"
|
711 |
+
multiple_char_pattern = re.compile(r"(\D)\1{2,}", re.DOTALL)
|
712 |
+
|
713 |
+
rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]"
|
714 |
+
rejected_chars_regexv2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]"
|
715 |
+
|
716 |
+
regex_url_step1 = r"(?=http)[^\s]+"
|
717 |
+
regex_url_step2 = r"(?=www)[^\s]+"
|
718 |
+
regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)"
|
719 |
+
regex_mention = r"@[\w\d]+"
|
720 |
+
regex_email = r"\S+@\S+"
|
721 |
+
|
722 |
+
chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘"
|
723 |
+
chars_regexv2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/"
|
724 |
+
|
725 |
+
white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"'
|
726 |
+
white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'"
|
727 |
+
white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`"
|
728 |
+
white_spaced_em_dash = r"\—\s+([^—]+)\s+\—"
|
729 |
+
|
730 |
+
left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])"
|
731 |
+
right_spaced_chars = r"([\[\(\{“«‘*\~]) "
|
732 |
+
left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
|
733 |
+
|
734 |
+
hindi_nums = "٠١٢٣٤٥٦٧٨٩"
|
735 |
+
arabic_nums = "0123456789"
|
736 |
+
hindi_to_arabic_map = str.maketrans(hindi_nums, arabic_nums)
|
backend/processor.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import awesome_streamlit as ast
|
3 |
+
from .preprocess import (
|
4 |
+
ArabertPreprocessor,
|
5 |
+
white_spaced_back_quotation_regex,
|
6 |
+
white_spaced_double_quotation_regex,
|
7 |
+
white_spaced_em_dash,
|
8 |
+
white_spaced_single_quotation_regex,
|
9 |
+
left_and_right_spaced_chars,
|
10 |
+
left_spaced_chars,
|
11 |
+
right_spaced_chars,
|
12 |
+
)
|
13 |
+
import re
|
14 |
+
|
15 |
+
MODELS_to_SELECT = [
|
16 |
+
"None",
|
17 |
+
"bert-base-arabertv01",
|
18 |
+
"bert-base-arabert",
|
19 |
+
"bert-base-arabertv02",
|
20 |
+
"bert-base-arabertv2",
|
21 |
+
"bert-large-arabertv02",
|
22 |
+
"bert-large-arabertv2",
|
23 |
+
"araelectra-base",
|
24 |
+
"araelectra-base-discriminator",
|
25 |
+
"araelectra-base-generator",
|
26 |
+
"araelectra-base-artydiqa",
|
27 |
+
"aragpt2-base",
|
28 |
+
"aragpt2-medium",
|
29 |
+
"aragpt2-large",
|
30 |
+
"aragpt2-mega",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def unpreprocess(text: str) -> str:
|
35 |
+
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
|
36 |
+
The objective is to make the generated text of any model appear natural and not preprocessed.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
text (:obj:`str`): input text to be un-preprocessed
|
40 |
+
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
str: The unpreprocessed (and possibly Farasa-desegmented) text.
|
44 |
+
"""
|
45 |
+
|
46 |
+
text = desegment(text)
|
47 |
+
|
48 |
+
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
|
49 |
+
# https://stackoverflow.com/a/53436792/5381220
|
50 |
+
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
|
51 |
+
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
|
52 |
+
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
|
53 |
+
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
|
54 |
+
|
55 |
+
# during generation, sometimes the models don't put a space after the dot, this handles it
|
56 |
+
text = text.replace(".", " . ")
|
57 |
+
text = " ".join(text.split())
|
58 |
+
|
59 |
+
# handle decimals
|
60 |
+
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
|
61 |
+
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
|
62 |
+
|
63 |
+
text = re.sub(left_and_right_spaced_chars, r"\1", text)
|
64 |
+
text = re.sub(left_spaced_chars, r"\1", text)
|
65 |
+
text = re.sub(right_spaced_chars, r"\1", text)
|
66 |
+
|
67 |
+
return text
|
68 |
+
|
69 |
+
|
70 |
+
def desegment(text: str) -> str:
|
71 |
+
"""
|
72 |
+
Use this function if sentence tokenization was done using
|
73 |
+
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
|
74 |
+
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
|
75 |
+
and after before the '+' for suffixes
|
76 |
+
|
77 |
+
Example:
|
78 |
+
>>> desegment('ال+ دراس +ات')
|
79 |
+
الدراسات
|
80 |
+
"""
|
81 |
+
text = text.replace("+ ", "+")
|
82 |
+
text = text.replace(" +", "+")
|
83 |
+
text = " ".join([_desegmentword(word) for word in text.split(" ")])
|
84 |
+
return text
|
85 |
+
|
86 |
+
|
87 |
+
def _desegmentword(orig_word: str) -> str:
|
88 |
+
"""
|
89 |
+
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
|
90 |
+
|
91 |
+
Example:
|
92 |
+
>>> _desegmentword("ال+يومي+ة")
|
93 |
+
اليومية
|
94 |
+
"""
|
95 |
+
word = orig_word.replace("ل+ال+", "لل")
|
96 |
+
if "ال+ال" not in orig_word:
|
97 |
+
word = word.replace("ل+ال", "لل")
|
98 |
+
word = word.replace("+", "")
|
99 |
+
word = word.replace("للل", "لل")
|
100 |
+
return word
|
101 |
+
|
102 |
+
|
103 |
+
def write():
|
104 |
+
|
105 |
+
st.markdown(
|
106 |
+
"""
|
107 |
+
<h1 style="text-align:left;">Arabic Text Pre-Processor</h1>
|
108 |
+
""",
|
109 |
+
unsafe_allow_html=True,
|
110 |
+
)
|
111 |
+
st.markdown(
|
112 |
+
"""
|
113 |
+
<style>
|
114 |
+
p, div, input, label {
|
115 |
+
text-align: right;
|
116 |
+
}
|
117 |
+
</style>
|
118 |
+
""",
|
119 |
+
unsafe_allow_html=True,
|
120 |
+
)
|
121 |
+
input_text = st.text_input(
|
122 |
+
"Text to Pre-Process",
|
123 |
+
value="ولن نبالغ إذا قلنا: إن 'هاتف' أو 'كمبيوتر المكتب' في زمننا هذا ضروري",
|
124 |
+
)
|
125 |
+
|
126 |
+
st.sidebar.title("Model Selector")
|
127 |
+
model_selector = st.sidebar.selectbox(
|
128 |
+
"""Select None to enable further filters""", options=MODELS_to_SELECT, index=3
|
129 |
+
)
|
130 |
+
if model_selector == "None":
|
131 |
+
keep_emojis = st.sidebar.checkbox("Keep emojis", False)
|
132 |
+
remove_html_markup = st.sidebar.checkbox("Remove html markup", True)
|
133 |
+
strip_tashkeel = st.sidebar.checkbox("Strip tashkeel", True)
|
134 |
+
replace_urls_emails_mentions = st.sidebar.checkbox(
|
135 |
+
"Replace urls and emails", True
|
136 |
+
)
|
137 |
+
strip_tatweel = st.sidebar.checkbox("Strip tatweel", True)
|
138 |
+
insert_white_spaces = st.sidebar.checkbox("Insert white spaces", True)
|
139 |
+
remove_non_digit_repetition = st.sidebar.checkbox(
|
140 |
+
"Remove non-digit repetition", True
|
141 |
+
)
|
142 |
+
replace_slash_with_dash = st.sidebar.checkbox("Replace slash with dash", None)
|
143 |
+
map_hindi_numbers_to_arabic = st.sidebar.checkbox(
|
144 |
+
"Map hindi numbers to arabic", None
|
145 |
+
)
|
146 |
+
apply_farasa_segmentation = st.sidebar.checkbox(
|
147 |
+
"Apply farasa segmentation", None
|
148 |
+
)
|
149 |
+
|
150 |
+
run_preprocessor = st.button("Run Pre-Processor")
|
151 |
+
|
152 |
+
prep_text = None
|
153 |
+
if run_preprocessor:
|
154 |
+
if model_selector == "None":
|
155 |
+
arabert_preprocessor = ArabertPreprocessor(
|
156 |
+
model_selector,
|
157 |
+
keep_emojis,
|
158 |
+
remove_html_markup,
|
159 |
+
replace_urls_emails_mentions,
|
160 |
+
strip_tashkeel,
|
161 |
+
strip_tatweel,
|
162 |
+
insert_white_spaces,
|
163 |
+
remove_non_digit_repetition,
|
164 |
+
replace_slash_with_dash,
|
165 |
+
map_hindi_numbers_to_arabic,
|
166 |
+
apply_farasa_segmentation,
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
arabert_preprocessor = ArabertPreprocessor(model_name=model_selector)
|
170 |
+
prep_text = arabert_preprocessor._preprocess_v3(input_text)
|
171 |
+
st.write(prep_text)
|
172 |
+
|
173 |
+
st.write("-----")
|
174 |
+
input_text_unprep = st.text_input(
|
175 |
+
"Text to Undo the Pre-Processing",
|
176 |
+
value=prep_text
|
177 |
+
if prep_text
|
178 |
+
else "و+ لن نبالغ إذا قل +نا : إن ' هاتف ' أو ' كمبيوتر ال+ مكتب ' في زمن +نا هذا ضروري",
|
179 |
+
)
|
180 |
+
run_unpreprocessor = st.button("Run Un-Pre-Processor")
|
181 |
+
|
182 |
+
if run_unpreprocessor:
|
183 |
+
st.write(unpreprocess(input_text_unprep))
|
backend/qa.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from .qa_utils import annotate_answer
|
4 |
+
from .services import get_qa_answers
|
5 |
+
|
6 |
+
|
7 |
+
def write():
|
8 |
+
_, col1, _ = st.columns(3)
|
9 |
+
|
10 |
+
with col1:
|
11 |
+
st.title("Ask any question!")
|
12 |
+
|
13 |
+
st.markdown(
|
14 |
+
"""
|
15 |
+
<style>
|
16 |
+
p, div, input, label {
|
17 |
+
text-align: right;
|
18 |
+
}
|
19 |
+
</style>
|
20 |
+
""",
|
21 |
+
unsafe_allow_html=True,
|
22 |
+
)
|
23 |
+
|
24 |
+
st.sidebar.write("\n")
|
25 |
+
n_answers = st.sidebar.slider(
|
26 |
+
"Max. number of answers", min_value=1, max_value=10, value=2, step=1
|
27 |
+
)
|
28 |
+
|
29 |
+
question = st.text_input("", value="من هو جو بايدن؟")
|
30 |
+
if "؟" not in question:
|
31 |
+
question += "؟"
|
32 |
+
|
33 |
+
run_query = st.button("Find answers")
|
34 |
+
if run_query:
|
35 |
+
# https://discuss.streamlit.io/t/showing-a-gif-while-st-spinner-runs/5084
|
36 |
+
with st.spinner("Searching..."):
|
37 |
+
results_dict = get_qa_answers(question)
|
38 |
+
|
39 |
+
if len(results_dict) > 0:
|
40 |
+
st.write("## Answers:")
|
41 |
+
for result in results_dict["results"][:n_answers]:
|
42 |
+
annotate_answer(result)
|
43 |
+
f"[**Source**](<{result['link']}>)"
|
44 |
+
else:
|
45 |
+
st.write("## 😞 No results found.")
|
backend/qa_utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit.components.v1
|
2 |
+
|
3 |
+
from htbuilder import HtmlElement, div, span, styles
|
4 |
+
from htbuilder.units import px, rem, em
|
5 |
+
|
6 |
+
|
7 |
+
def annotation(body, label="", background="#ddd", color="#333", **style):
|
8 |
+
"""Build an HtmlElement span object with the given body and annotation label.
|
9 |
+
|
10 |
+
The end result will look something like this:
|
11 |
+
|
12 |
+
[body | label]
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
body : string
|
17 |
+
The string to put in the "body" part of the annotation.
|
18 |
+
label : string
|
19 |
+
The string to put in the "label" part of the annotation.
|
20 |
+
background : string
|
21 |
+
The color to use for the background "chip" containing this annotation.
|
22 |
+
color : string
|
23 |
+
The color to use for the body and label text.
|
24 |
+
**style : dict
|
25 |
+
Any CSS you want to use to customize the containing "chip".
|
26 |
+
|
27 |
+
Examples
|
28 |
+
--------
|
29 |
+
|
30 |
+
Produce a simple annotation with default colors:
|
31 |
+
|
32 |
+
>>> annotation("apple", "fruit")
|
33 |
+
|
34 |
+
Produce an annotation with custom colors:
|
35 |
+
|
36 |
+
>>> annotation("apple", "fruit", background="#FF0", color="black")
|
37 |
+
|
38 |
+
Produce an annotation with crazy CSS:
|
39 |
+
|
40 |
+
>>> annotation("apple", "fruit", background="#FF0", border="1px dashed red")
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
if "font_family" not in style:
|
45 |
+
style["font_family"] = "sans-serif"
|
46 |
+
|
47 |
+
return span(
|
48 |
+
style=styles(
|
49 |
+
background=background,
|
50 |
+
border_radius=rem(0.33),
|
51 |
+
color=color,
|
52 |
+
padding=(rem(0.17), rem(0.67)),
|
53 |
+
display="inline-flex",
|
54 |
+
justify_content="center",
|
55 |
+
align_items="center",
|
56 |
+
**style,
|
57 |
+
)
|
58 |
+
)(
|
59 |
+
body,
|
60 |
+
span(
|
61 |
+
style=styles(
|
62 |
+
color=color,
|
63 |
+
font_size=em(0.67),
|
64 |
+
opacity=0.5,
|
65 |
+
padding_left=rem(0.5),
|
66 |
+
text_transform="uppercase",
|
67 |
+
margin_bottom=px(-2),
|
68 |
+
)
|
69 |
+
)(label),
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def annotated_text(*args, **kwargs):
|
74 |
+
"""Writes test with annotations into your Streamlit app.
|
75 |
+
|
76 |
+
Parameters
|
77 |
+
----------
|
78 |
+
*args : str, tuple or htbuilder.HtmlElement
|
79 |
+
Arguments can be:
|
80 |
+
- strings, to draw the string as-is on the screen.
|
81 |
+
- tuples of the form (main_text, annotation_text, background, color) where
|
82 |
+
background and foreground colors are optional and should be an CSS-valid string such as
|
83 |
+
"#aabbcc" or "rgb(10, 20, 30)"
|
84 |
+
- HtmlElement objects in case you want to customize the annotations further. In particular,
|
85 |
+
you can import the `annotation()` function from this module to easily produce annotations
|
86 |
+
whose CSS you can customize via keyword arguments.
|
87 |
+
|
88 |
+
Examples
|
89 |
+
--------
|
90 |
+
|
91 |
+
>>> annotated_text(
|
92 |
+
... "This ",
|
93 |
+
... ("is", "verb", "#8ef"),
|
94 |
+
... " some ",
|
95 |
+
... ("annotated", "adj", "#faa"),
|
96 |
+
... ("text", "noun", "#afa"),
|
97 |
+
... " for those of ",
|
98 |
+
... ("you", "pronoun", "#fea"),
|
99 |
+
... " who ",
|
100 |
+
... ("like", "verb", "#8ef"),
|
101 |
+
... " this sort of ",
|
102 |
+
... ("thing", "noun", "#afa"),
|
103 |
+
... )
|
104 |
+
|
105 |
+
>>> annotated_text(
|
106 |
+
... "Hello ",
|
107 |
+
... annotation("world!", "noun", color="#8ef", border="1px dashed red"),
|
108 |
+
... )
|
109 |
+
|
110 |
+
"""
|
111 |
+
out = div(
|
112 |
+
style=styles(
|
113 |
+
font_family="sans-serif",
|
114 |
+
line_height="1.45",
|
115 |
+
font_size=px(16),
|
116 |
+
text_align="right",
|
117 |
+
)
|
118 |
+
)
|
119 |
+
|
120 |
+
for arg in args:
|
121 |
+
if isinstance(arg, str):
|
122 |
+
out(arg)
|
123 |
+
|
124 |
+
elif isinstance(arg, HtmlElement):
|
125 |
+
out(arg)
|
126 |
+
|
127 |
+
elif isinstance(arg, tuple):
|
128 |
+
out(annotation(*arg))
|
129 |
+
|
130 |
+
else:
|
131 |
+
raise Exception("Oh noes!")
|
132 |
+
|
133 |
+
streamlit.components.v1.html(str(out), **kwargs)
|
134 |
+
|
135 |
+
|
136 |
+
def shorten_text(text, n, reverse=False):
|
137 |
+
if text.isspace() or text == "":
|
138 |
+
return text
|
139 |
+
if reverse:
|
140 |
+
text = text[::-1]
|
141 |
+
words = iter(text.split())
|
142 |
+
lines, current = [], next(words)
|
143 |
+
for word in words:
|
144 |
+
if len(current) + 1 + len(word) > n:
|
145 |
+
break
|
146 |
+
else:
|
147 |
+
current += " " + word
|
148 |
+
lines.append(current)
|
149 |
+
if reverse:
|
150 |
+
return lines[0][::-1]
|
151 |
+
return lines[0]
|
152 |
+
|
153 |
+
|
154 |
+
def annotate_answer(result):
|
155 |
+
annotated_text(
|
156 |
+
shorten_text(
|
157 |
+
result["original"][: result["new_start"]],
|
158 |
+
500,
|
159 |
+
reverse=True,
|
160 |
+
),
|
161 |
+
(result["new_answer"], "جواب", "#8ef"),
|
162 |
+
shorten_text(result["original"][result["new_end"] :], 500) + " ...... إلخ",
|
163 |
+
)
|
backend/sa.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .services import SentimentAnalyzer
|
3 |
+
from functools import lru_cache
|
4 |
+
|
5 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
6 |
+
@lru_cache(maxsize=1)
|
7 |
+
def load_text_generator():
|
8 |
+
predictor = SentimentAnalyzer()
|
9 |
+
return predictor
|
10 |
+
|
11 |
+
|
12 |
+
predictor = load_text_generator()
|
13 |
+
|
14 |
+
|
15 |
+
def write():
|
16 |
+
st.markdown(
|
17 |
+
"""
|
18 |
+
# Arabic Sentiment Analysis
|
19 |
+
|
20 |
+
"""
|
21 |
+
)
|
22 |
+
|
23 |
+
input_text = st.text_input(
|
24 |
+
"Enter your text here:",
|
25 |
+
)
|
26 |
+
if st.button("Predict"):
|
27 |
+
with st.spinner("Predicting..."):
|
28 |
+
prediction, score, all_score = predictor.predict([input_text])
|
29 |
+
st.write(f"Result: {prediction[0]}")
|
30 |
+
detailed_score = {
|
31 |
+
"Positive": all_score[0][0],
|
32 |
+
"Neutral": all_score[0][1],
|
33 |
+
"Negative": all_score[0][2],
|
34 |
+
}
|
35 |
+
st.write("All scores:")
|
36 |
+
st.write(detailed_score)
|
backend/sa_utils.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from contextlib import contextmanager
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from fuzzysearch import find_near_matches
|
8 |
+
from pyarabic import araby
|
9 |
+
from torch import nn
|
10 |
+
from transformers import AutoTokenizer, BertModel, BertPreTrainedModel, pipeline
|
11 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
12 |
+
|
13 |
+
from .preprocess import ArabertPreprocessor, url_regexes, user_mention_regex
|
14 |
+
|
15 |
+
multiple_char_pattern = re.compile(r"(.)\1{2,}", re.DOTALL)
|
16 |
+
|
17 |
+
# ASAD-NEW_AraBERT_PREP-Balanced
|
18 |
+
class NewArabicPreprocessorBalanced(ArabertPreprocessor):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
model_name: str,
|
22 |
+
keep_emojis: bool = False,
|
23 |
+
remove_html_markup: bool = True,
|
24 |
+
replace_urls_emails_mentions: bool = True,
|
25 |
+
strip_tashkeel: bool = True,
|
26 |
+
strip_tatweel: bool = True,
|
27 |
+
insert_white_spaces: bool = True,
|
28 |
+
remove_non_digit_repetition: bool = True,
|
29 |
+
replace_slash_with_dash: bool = None,
|
30 |
+
map_hindi_numbers_to_arabic: bool = None,
|
31 |
+
apply_farasa_segmentation: bool = None,
|
32 |
+
):
|
33 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
34 |
+
keep_emojis = True
|
35 |
+
remove_non_digit_repetition = True
|
36 |
+
super().__init__(
|
37 |
+
model_name=model_name,
|
38 |
+
keep_emojis=keep_emojis,
|
39 |
+
remove_html_markup=remove_html_markup,
|
40 |
+
replace_urls_emails_mentions=replace_urls_emails_mentions,
|
41 |
+
strip_tashkeel=strip_tashkeel,
|
42 |
+
strip_tatweel=strip_tatweel,
|
43 |
+
insert_white_spaces=insert_white_spaces,
|
44 |
+
remove_non_digit_repetition=remove_non_digit_repetition,
|
45 |
+
replace_slash_with_dash=replace_slash_with_dash,
|
46 |
+
map_hindi_numbers_to_arabic=map_hindi_numbers_to_arabic,
|
47 |
+
apply_farasa_segmentation=apply_farasa_segmentation,
|
48 |
+
)
|
49 |
+
self.true_model_name = model_name
|
50 |
+
|
51 |
+
def preprocess(self, text):
|
52 |
+
if "UBC-NLP" in self.true_model_name:
|
53 |
+
return self.ubc_prep(text)
|
54 |
+
|
55 |
+
def ubc_prep(self, text):
|
56 |
+
text = re.sub("\s", " ", text)
|
57 |
+
text = text.replace("\\n", " ")
|
58 |
+
text = text.replace("\\r", " ")
|
59 |
+
text = araby.strip_tashkeel(text)
|
60 |
+
text = araby.strip_tatweel(text)
|
61 |
+
# replace all possible URLs
|
62 |
+
for reg in url_regexes:
|
63 |
+
text = re.sub(reg, " URL ", text)
|
64 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
65 |
+
# replace mentions with USER
|
66 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
67 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
68 |
+
# replace hashtags with HASHTAG
|
69 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
70 |
+
text = text.replace("#", " HASH ")
|
71 |
+
text = text.replace("_", " ")
|
72 |
+
text = " ".join(text.split())
|
73 |
+
# text = re.sub("\B\\[Uu]\w+", "", text)
|
74 |
+
text = text.replace("\\U0001f97a", "🥺")
|
75 |
+
text = text.replace("\\U0001f928", "🤨")
|
76 |
+
text = text.replace("\\U0001f9d8", "😀")
|
77 |
+
text = text.replace("\\U0001f975", "😥")
|
78 |
+
text = text.replace("\\U0001f92f", "😲")
|
79 |
+
text = text.replace("\\U0001f92d", "🤭")
|
80 |
+
text = text.replace("\\U0001f9d1", "😐")
|
81 |
+
text = text.replace("\\U000e0067", "")
|
82 |
+
text = text.replace("\\U000e006e", "")
|
83 |
+
text = text.replace("\\U0001f90d", "♥")
|
84 |
+
text = text.replace("\\U0001f973", "🎉")
|
85 |
+
text = text.replace("\\U0001fa79", "")
|
86 |
+
text = text.replace("\\U0001f92b", "🤐")
|
87 |
+
text = text.replace("\\U0001f9da", "🦋")
|
88 |
+
text = text.replace("\\U0001f90e", "♥")
|
89 |
+
text = text.replace("\\U0001f9d0", "🧐")
|
90 |
+
text = text.replace("\\U0001f9cf", "")
|
91 |
+
text = text.replace("\\U0001f92c", "😠")
|
92 |
+
text = text.replace("\\U0001f9f8", "😸")
|
93 |
+
text = text.replace("\\U0001f9b6", "💩")
|
94 |
+
text = text.replace("\\U0001f932", "🤲")
|
95 |
+
text = text.replace("\\U0001f9e1", "🧡")
|
96 |
+
text = text.replace("\\U0001f974", "☹")
|
97 |
+
text = text.replace("\\U0001f91f", "")
|
98 |
+
text = text.replace("\\U0001f9fb", "💩")
|
99 |
+
text = text.replace("\\U0001f92a", "🤪")
|
100 |
+
text = text.replace("\\U0001f9fc", "")
|
101 |
+
text = text.replace("\\U000e0065", "")
|
102 |
+
text = text.replace("\\U0001f92e", "💩")
|
103 |
+
text = text.replace("\\U000e007f", "")
|
104 |
+
text = text.replace("\\U0001f970", "🥰")
|
105 |
+
text = text.replace("\\U0001f929", "🤩")
|
106 |
+
text = text.replace("\\U0001f6f9", "")
|
107 |
+
text = text.replace("🤍", "♥")
|
108 |
+
text = text.replace("🦠", "😷")
|
109 |
+
text = text.replace("🤢", "مقرف")
|
110 |
+
text = text.replace("🤮", "مقرف")
|
111 |
+
text = text.replace("🕠", "⌚")
|
112 |
+
text = text.replace("🤬", "😠")
|
113 |
+
text = text.replace("🤧", "😷")
|
114 |
+
text = text.replace("🥳", "🎉")
|
115 |
+
text = text.replace("🥵", "🔥")
|
116 |
+
text = text.replace("🥴", "☹")
|
117 |
+
text = text.replace("🤫", "🤐")
|
118 |
+
text = text.replace("🤥", "كذاب")
|
119 |
+
text = text.replace("\\u200d", " ")
|
120 |
+
text = text.replace("u200d", " ")
|
121 |
+
text = text.replace("\\u200c", " ")
|
122 |
+
text = text.replace("u200c", " ")
|
123 |
+
text = text.replace('"', "'")
|
124 |
+
text = text.replace("\\xa0", "")
|
125 |
+
text = text.replace("\\u2066", " ")
|
126 |
+
text = re.sub("\B\\\[Uu]\w+", "", text)
|
127 |
+
text = super(NewArabicPreprocessorBalanced, self).preprocess(text)
|
128 |
+
|
129 |
+
text = " ".join(text.split())
|
130 |
+
return text
|
131 |
+
|
132 |
+
|
133 |
+
"""CNNMarbertArabicPreprocessor"""
|
134 |
+
# ASAD-CNN_MARBERT
|
135 |
+
class CNNMarbertArabicPreprocessor(ArabertPreprocessor):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
model_name,
|
139 |
+
keep_emojis=False,
|
140 |
+
remove_html_markup=True,
|
141 |
+
replace_urls_emails_mentions=True,
|
142 |
+
remove_elongations=True,
|
143 |
+
):
|
144 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
145 |
+
keep_emojis = True
|
146 |
+
remove_elongations = False
|
147 |
+
super().__init__(
|
148 |
+
model_name,
|
149 |
+
keep_emojis,
|
150 |
+
remove_html_markup,
|
151 |
+
replace_urls_emails_mentions,
|
152 |
+
remove_elongations,
|
153 |
+
)
|
154 |
+
self.true_model_name = model_name
|
155 |
+
|
156 |
+
def preprocess(self, text):
|
157 |
+
if "UBC-NLP" in self.true_model_name:
|
158 |
+
return self.ubc_prep(text)
|
159 |
+
|
160 |
+
def ubc_prep(self, text):
|
161 |
+
text = re.sub("\s", " ", text)
|
162 |
+
text = text.replace("\\n", " ")
|
163 |
+
text = araby.strip_tashkeel(text)
|
164 |
+
text = araby.strip_tatweel(text)
|
165 |
+
# replace all possible URLs
|
166 |
+
for reg in url_regexes:
|
167 |
+
text = re.sub(reg, " URL ", text)
|
168 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
169 |
+
# replace mentions with USER
|
170 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
171 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
172 |
+
# replace hashtags with HASHTAG
|
173 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
174 |
+
text = text.replace("#", " HASH ")
|
175 |
+
text = text.replace("_", " ")
|
176 |
+
text = " ".join(text.split())
|
177 |
+
text = super(CNNMarbertArabicPreprocessor, self).preprocess(text)
|
178 |
+
text = text.replace("\u200d", " ")
|
179 |
+
text = text.replace("u200d", " ")
|
180 |
+
text = text.replace("\u200c", " ")
|
181 |
+
text = text.replace("u200c", " ")
|
182 |
+
text = text.replace('"', "'")
|
183 |
+
# text = re.sub('[\d\.]+', ' NUM ', text)
|
184 |
+
# text = re.sub('(NUM\s*)+', ' NUM ', text)
|
185 |
+
text = multiple_char_pattern.sub(r"\1\1", text)
|
186 |
+
text = " ".join(text.split())
|
187 |
+
return text
|
188 |
+
|
189 |
+
|
190 |
+
"""Trial5ArabicPreprocessor"""
|
191 |
+
|
192 |
+
|
193 |
+
class Trial5ArabicPreprocessor(ArabertPreprocessor):
|
194 |
+
def __init__(
|
195 |
+
self,
|
196 |
+
model_name,
|
197 |
+
keep_emojis=False,
|
198 |
+
remove_html_markup=True,
|
199 |
+
replace_urls_emails_mentions=True,
|
200 |
+
):
|
201 |
+
if "UBC-NLP" in model_name:
|
202 |
+
keep_emojis = True
|
203 |
+
super().__init__(
|
204 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
205 |
+
)
|
206 |
+
self.true_model_name = model_name
|
207 |
+
|
208 |
+
def preprocess(self, text):
|
209 |
+
if "UBC-NLP" in self.true_model_name:
|
210 |
+
return self.ubc_prep(text)
|
211 |
+
|
212 |
+
def ubc_prep(self, text):
|
213 |
+
text = re.sub("\s", " ", text)
|
214 |
+
text = text.replace("\\n", " ")
|
215 |
+
text = araby.strip_tashkeel(text)
|
216 |
+
text = araby.strip_tatweel(text)
|
217 |
+
# replace all possible URLs
|
218 |
+
for reg in url_regexes:
|
219 |
+
text = re.sub(reg, " URL ", text)
|
220 |
+
# replace mentions with USER
|
221 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
222 |
+
# replace hashtags with HASHTAG
|
223 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
224 |
+
text = text.replace("#", " HASH TAG ")
|
225 |
+
text = text.replace("_", " ")
|
226 |
+
text = " ".join(text.split())
|
227 |
+
text = super(Trial5ArabicPreprocessor, self).preprocess(text)
|
228 |
+
# text = text.replace("السلام عليكم"," ")
|
229 |
+
# text = text.replace(find_near_matches("السلام عليكم",text,max_deletions=3,max_l_dist=3)[0].matched," ")
|
230 |
+
return text
|
231 |
+
|
232 |
+
|
233 |
+
"""SarcasmArabicPreprocessor"""
|
234 |
+
|
235 |
+
|
236 |
+
class SarcasmArabicPreprocessor(ArabertPreprocessor):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
model_name,
|
240 |
+
keep_emojis=False,
|
241 |
+
remove_html_markup=True,
|
242 |
+
replace_urls_emails_mentions=True,
|
243 |
+
):
|
244 |
+
if "UBC-NLP" in model_name:
|
245 |
+
keep_emojis = True
|
246 |
+
super().__init__(
|
247 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
248 |
+
)
|
249 |
+
self.true_model_name = model_name
|
250 |
+
|
251 |
+
def preprocess(self, text):
|
252 |
+
if "UBC-NLP" in self.true_model_name:
|
253 |
+
return self.ubc_prep(text)
|
254 |
+
else:
|
255 |
+
return super(SarcasmArabicPreprocessor, self).preprocess(text)
|
256 |
+
|
257 |
+
def ubc_prep(self, text):
|
258 |
+
text = re.sub("\s", " ", text)
|
259 |
+
text = text.replace("\\n", " ")
|
260 |
+
text = araby.strip_tashkeel(text)
|
261 |
+
text = araby.strip_tatweel(text)
|
262 |
+
# replace all possible URLs
|
263 |
+
for reg in url_regexes:
|
264 |
+
text = re.sub(reg, " URL ", text)
|
265 |
+
# replace mentions with USER
|
266 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
267 |
+
# replace hashtags with HASHTAG
|
268 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
269 |
+
text = text.replace("#", " HASH TAG ")
|
270 |
+
text = text.replace("_", " ")
|
271 |
+
text = text.replace('"', " ")
|
272 |
+
text = " ".join(text.split())
|
273 |
+
text = super(SarcasmArabicPreprocessor, self).preprocess(text)
|
274 |
+
return text
|
275 |
+
|
276 |
+
|
277 |
+
"""NoAOAArabicPreprocessor"""
|
278 |
+
|
279 |
+
|
280 |
+
class NoAOAArabicPreprocessor(ArabertPreprocessor):
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
model_name,
|
284 |
+
keep_emojis=False,
|
285 |
+
remove_html_markup=True,
|
286 |
+
replace_urls_emails_mentions=True,
|
287 |
+
):
|
288 |
+
if "UBC-NLP" in model_name:
|
289 |
+
keep_emojis = True
|
290 |
+
super().__init__(
|
291 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
292 |
+
)
|
293 |
+
self.true_model_name = model_name
|
294 |
+
|
295 |
+
def preprocess(self, text):
|
296 |
+
if "UBC-NLP" in self.true_model_name:
|
297 |
+
return self.ubc_prep(text)
|
298 |
+
else:
|
299 |
+
return super(NoAOAArabicPreprocessor, self).preprocess(text)
|
300 |
+
|
301 |
+
def ubc_prep(self, text):
|
302 |
+
text = re.sub("\s", " ", text)
|
303 |
+
text = text.replace("\\n", " ")
|
304 |
+
text = araby.strip_tashkeel(text)
|
305 |
+
text = araby.strip_tatweel(text)
|
306 |
+
# replace all possible URLs
|
307 |
+
for reg in url_regexes:
|
308 |
+
text = re.sub(reg, " URL ", text)
|
309 |
+
# replace mentions with USER
|
310 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
311 |
+
# replace hashtags with HASHTAG
|
312 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
313 |
+
text = text.replace("#", " HASH TAG ")
|
314 |
+
text = text.replace("_", " ")
|
315 |
+
text = " ".join(text.split())
|
316 |
+
text = super(NoAOAArabicPreprocessor, self).preprocess(text)
|
317 |
+
text = text.replace("السلام عليكم", " ")
|
318 |
+
text = text.replace("ورحمة الله وبركاته", " ")
|
319 |
+
matched = find_near_matches("السلام عليكم", text, max_deletions=3, max_l_dist=3)
|
320 |
+
if len(matched) > 0:
|
321 |
+
text = text.replace(matched[0].matched, " ")
|
322 |
+
matched = find_near_matches(
|
323 |
+
"ورحمة الله وبركاته", text, max_deletions=3, max_l_dist=3
|
324 |
+
)
|
325 |
+
if len(matched) > 0:
|
326 |
+
text = text.replace(matched[0].matched, " ")
|
327 |
+
return text
|
328 |
+
|
329 |
+
|
330 |
+
class CnnBertForSequenceClassification(BertPreTrainedModel):
|
331 |
+
def __init__(self, config):
|
332 |
+
super().__init__(config)
|
333 |
+
self.num_labels = config.num_labels
|
334 |
+
self.config = config
|
335 |
+
|
336 |
+
self.bert = BertModel(config)
|
337 |
+
|
338 |
+
filter_sizes = [1, 2, 3, 4, 5]
|
339 |
+
num_filters = 32
|
340 |
+
self.convs1 = nn.ModuleList(
|
341 |
+
[nn.Conv2d(4, num_filters, (K, config.hidden_size)) for K in filter_sizes]
|
342 |
+
)
|
343 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
344 |
+
self.classifier = nn.Linear(len(filter_sizes) * num_filters, config.num_labels)
|
345 |
+
|
346 |
+
self.init_weights()
|
347 |
+
|
348 |
+
def forward(
|
349 |
+
self,
|
350 |
+
input_ids=None,
|
351 |
+
attention_mask=None,
|
352 |
+
token_type_ids=None,
|
353 |
+
position_ids=None,
|
354 |
+
head_mask=None,
|
355 |
+
inputs_embeds=None,
|
356 |
+
labels=None,
|
357 |
+
output_attentions=None,
|
358 |
+
output_hidden_states=None,
|
359 |
+
return_dict=None,
|
360 |
+
):
|
361 |
+
|
362 |
+
return_dict = (
|
363 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
364 |
+
)
|
365 |
+
|
366 |
+
outputs = self.bert(
|
367 |
+
input_ids,
|
368 |
+
attention_mask=attention_mask,
|
369 |
+
token_type_ids=token_type_ids,
|
370 |
+
position_ids=position_ids,
|
371 |
+
head_mask=head_mask,
|
372 |
+
inputs_embeds=inputs_embeds,
|
373 |
+
output_attentions=output_attentions,
|
374 |
+
output_hidden_states=output_hidden_states,
|
375 |
+
return_dict=return_dict,
|
376 |
+
)
|
377 |
+
|
378 |
+
x = outputs[2][-4:]
|
379 |
+
|
380 |
+
x = torch.stack(x, dim=1)
|
381 |
+
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]
|
382 |
+
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
|
383 |
+
x = torch.cat(x, 1)
|
384 |
+
x = self.dropout(x)
|
385 |
+
logits = self.classifier(x)
|
386 |
+
|
387 |
+
loss = None
|
388 |
+
if labels is not None:
|
389 |
+
if self.config.problem_type is None:
|
390 |
+
if self.num_labels == 1:
|
391 |
+
self.config.problem_type = "regression"
|
392 |
+
elif self.num_labels > 1 and (
|
393 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
394 |
+
):
|
395 |
+
self.config.problem_type = "single_label_classification"
|
396 |
+
else:
|
397 |
+
self.config.problem_type = "multi_label_classification"
|
398 |
+
|
399 |
+
if self.config.problem_type == "regression":
|
400 |
+
loss_fct = nn.MSELoss()
|
401 |
+
if self.num_labels == 1:
|
402 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
403 |
+
else:
|
404 |
+
loss = loss_fct(logits, labels)
|
405 |
+
elif self.config.problem_type == "single_label_classification":
|
406 |
+
loss_fct = nn.CrossEntropyLoss()
|
407 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
408 |
+
elif self.config.problem_type == "multi_label_classification":
|
409 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
410 |
+
loss = loss_fct(logits, labels)
|
411 |
+
if not return_dict:
|
412 |
+
output = (logits,) + outputs[2:]
|
413 |
+
return ((loss,) + output) if loss is not None else output
|
414 |
+
|
415 |
+
return SequenceClassifierOutput(
|
416 |
+
loss=loss,
|
417 |
+
logits=logits,
|
418 |
+
hidden_states=None,
|
419 |
+
attentions=outputs.attentions,
|
420 |
+
)
|
421 |
+
|
422 |
+
|
423 |
+
class CNNTextClassificationPipeline:
|
424 |
+
def __init__(self, model_path, device, return_all_scores=False):
|
425 |
+
self.model_path = model_path
|
426 |
+
self.model = CnnBertForSequenceClassification.from_pretrained(self.model_path)
|
427 |
+
# Special handling
|
428 |
+
self.device = torch.device("cpu" if device < 0 else f"cuda:{device}")
|
429 |
+
if self.device.type == "cuda":
|
430 |
+
self.model = self.model.to(self.device)
|
431 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
432 |
+
self.return_all_scores = return_all_scores
|
433 |
+
|
434 |
+
@contextmanager
|
435 |
+
def device_placement(self):
|
436 |
+
"""
|
437 |
+
Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.
|
438 |
+
Returns:
|
439 |
+
Context manager
|
440 |
+
Examples::
|
441 |
+
# Explicitly ask for tensor allocation on CUDA device :0
|
442 |
+
pipe = pipeline(..., device=0)
|
443 |
+
with pipe.device_placement():
|
444 |
+
# Every framework specific tensor allocation will be done on the request device
|
445 |
+
output = pipe(...)
|
446 |
+
"""
|
447 |
+
|
448 |
+
if self.device.type == "cuda":
|
449 |
+
torch.cuda.set_device(self.device)
|
450 |
+
|
451 |
+
yield
|
452 |
+
|
453 |
+
def ensure_tensor_on_device(self, **inputs):
|
454 |
+
"""
|
455 |
+
Ensure PyTorch tensors are on the specified device.
|
456 |
+
Args:
|
457 |
+
inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`.
|
458 |
+
Return:
|
459 |
+
:obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device.
|
460 |
+
"""
|
461 |
+
return {
|
462 |
+
name: tensor.to(self.device) if isinstance(tensor, torch.Tensor) else tensor
|
463 |
+
for name, tensor in inputs.items()
|
464 |
+
}
|
465 |
+
|
466 |
+
def __call__(self, text):
|
467 |
+
"""
|
468 |
+
Classify the text(s) given as inputs.
|
469 |
+
Args:
|
470 |
+
args (:obj:`str` or :obj:`List[str]`):
|
471 |
+
One or several texts (or one list of prompts) to classify.
|
472 |
+
Return:
|
473 |
+
A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys:
|
474 |
+
- **label** (:obj:`str`) -- The label predicted.
|
475 |
+
- **score** (:obj:`float`) -- The corresponding probability.
|
476 |
+
If ``self.return_all_scores=True``, one such dictionary is returned per label.
|
477 |
+
"""
|
478 |
+
# outputs = super().__call__(*args, **kwargs)
|
479 |
+
inputs = self.tokenizer.batch_encode_plus(
|
480 |
+
text,
|
481 |
+
add_special_tokens=True,
|
482 |
+
max_length=64,
|
483 |
+
padding=True,
|
484 |
+
truncation="longest_first",
|
485 |
+
return_tensors="pt",
|
486 |
+
)
|
487 |
+
|
488 |
+
with torch.no_grad():
|
489 |
+
inputs = self.ensure_tensor_on_device(**inputs)
|
490 |
+
predictions = self.model(**inputs)[0].cpu()
|
491 |
+
|
492 |
+
predictions = predictions.numpy()
|
493 |
+
|
494 |
+
if self.model.config.num_labels == 1:
|
495 |
+
scores = 1.0 / (1.0 + np.exp(-predictions))
|
496 |
+
else:
|
497 |
+
scores = np.exp(predictions) / np.exp(predictions).sum(-1, keepdims=True)
|
498 |
+
if self.return_all_scores:
|
499 |
+
return [
|
500 |
+
[
|
501 |
+
{"label": self.model.config.id2label[i], "score": score.item()}
|
502 |
+
for i, score in enumerate(item)
|
503 |
+
]
|
504 |
+
for item in scores
|
505 |
+
]
|
506 |
+
else:
|
507 |
+
return [
|
508 |
+
{"label": self.inv_label_map[item.argmax()], "score": item.max().item()}
|
509 |
+
for item in scores
|
510 |
+
]
|
backend/sarcasm.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from .sa import predictor
|
3 |
+
|
4 |
+
|
5 |
+
def write():
|
6 |
+
st.markdown(
|
7 |
+
"""
|
8 |
+
# Arabic Sarcasm Detection
|
9 |
+
|
10 |
+
This is a simple sarcasm detection app that uses the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model trained on [ArSarcasm](https://github.com/iabufarha/ArSarcasm)
|
11 |
+
"""
|
12 |
+
)
|
13 |
+
|
14 |
+
input_text = st.text_input(
|
15 |
+
"Enter your text here:",
|
16 |
+
)
|
17 |
+
if st.button("Predict"):
|
18 |
+
with st.spinner("Predicting..."):
|
19 |
+
prediction, scores = predictor.get_preds_from_sarcasm([input_text])
|
20 |
+
st.write(f"Result: {prediction[0]}")
|
21 |
+
st.write(f"Score: {scores[0]}")
|
backend/services.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
from typing import List
|
6 |
+
from urllib.parse import unquote
|
7 |
+
|
8 |
+
import more_itertools
|
9 |
+
import pandas as pd
|
10 |
+
import requests
|
11 |
+
import streamlit as st
|
12 |
+
import wikipedia
|
13 |
+
from codetiming import Timer
|
14 |
+
from fuzzysearch import find_near_matches
|
15 |
+
from googleapi import google
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
from transformers import (
|
18 |
+
AutoTokenizer,
|
19 |
+
GPT2LMHeadModel,
|
20 |
+
GPT2Tokenizer,
|
21 |
+
pipeline,
|
22 |
+
set_seed,
|
23 |
+
)
|
24 |
+
|
25 |
+
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
26 |
+
from .preprocess import ArabertPreprocessor
|
27 |
+
from .sa_utils import *
|
28 |
+
from .utils import download_models, softmax
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
32 |
+
class TextGeneration:
|
33 |
+
def __init__(self):
|
34 |
+
self.debug = False
|
35 |
+
self.generation_pipline = {}
|
36 |
+
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega")
|
37 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(
|
38 |
+
"aubmindlab/aragpt2-mega", use_fast=False
|
39 |
+
)
|
40 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
41 |
+
self.API_KEY = os.getenv("API_KEY")
|
42 |
+
self.headers = {"Authorization": f"Bearer {self.API_KEY}"}
|
43 |
+
# self.model_names_or_paths = {
|
44 |
+
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium",
|
45 |
+
# "aragpt2-base": "D:/ML/Models/aragpt2-base",
|
46 |
+
# }
|
47 |
+
self.model_names_or_paths = {
|
48 |
+
# "aragpt2-medium": "aubmindlab/aragpt2-medium",
|
49 |
+
"aragpt2-base": "aubmindlab/aragpt2-base",
|
50 |
+
# "aragpt2-large": "aubmindlab/aragpt2-large",
|
51 |
+
"aragpt2-mega": "aubmindlab/aragpt2-mega",
|
52 |
+
}
|
53 |
+
set_seed(42)
|
54 |
+
|
55 |
+
def load_pipeline(self):
|
56 |
+
for model_name, model_path in self.model_names_or_paths.items():
|
57 |
+
if "base" in model_name or "medium" in model_name:
|
58 |
+
self.generation_pipline[model_name] = pipeline(
|
59 |
+
"text-generation",
|
60 |
+
model=GPT2LMHeadModel.from_pretrained(model_path),
|
61 |
+
tokenizer=self.tokenizer,
|
62 |
+
device=-1,
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
self.generation_pipline[model_name] = pipeline(
|
66 |
+
"text-generation",
|
67 |
+
model=GROVERLMHeadModel.from_pretrained(model_path),
|
68 |
+
tokenizer=self.tokenizer,
|
69 |
+
device=-1,
|
70 |
+
)
|
71 |
+
|
72 |
+
def load(self):
|
73 |
+
if not self.debug:
|
74 |
+
self.load_pipeline()
|
75 |
+
|
76 |
+
def generate(
|
77 |
+
self,
|
78 |
+
model_name,
|
79 |
+
prompt,
|
80 |
+
max_new_tokens: int,
|
81 |
+
temperature: float,
|
82 |
+
top_k: int,
|
83 |
+
top_p: float,
|
84 |
+
repetition_penalty: float,
|
85 |
+
no_repeat_ngram_size: int,
|
86 |
+
do_sample: bool,
|
87 |
+
num_beams: int,
|
88 |
+
):
|
89 |
+
logger.info(f"Generating with {model_name}")
|
90 |
+
prompt = self.preprocessor.preprocess(prompt)
|
91 |
+
return_full_text = False
|
92 |
+
return_text = True
|
93 |
+
num_return_sequences = 1
|
94 |
+
pad_token_id = 0
|
95 |
+
eos_token_id = 0
|
96 |
+
input_tok = self.tokenizer.tokenize(prompt)
|
97 |
+
max_length = len(input_tok) + max_new_tokens
|
98 |
+
if max_length > 1024:
|
99 |
+
max_length = 1024
|
100 |
+
if not self.debug:
|
101 |
+
generated_text = self.generation_pipline[model_name.lower()](
|
102 |
+
prompt,
|
103 |
+
max_length=max_length,
|
104 |
+
temperature=temperature,
|
105 |
+
top_k=top_k,
|
106 |
+
top_p=top_p,
|
107 |
+
repetition_penalty=repetition_penalty,
|
108 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
109 |
+
pad_token_id=pad_token_id,
|
110 |
+
eos_token_id=eos_token_id,
|
111 |
+
return_full_text=return_full_text,
|
112 |
+
return_text=return_text,
|
113 |
+
do_sample=do_sample,
|
114 |
+
num_beams=num_beams,
|
115 |
+
num_return_sequences=num_return_sequences,
|
116 |
+
)[0]["generated_text"]
|
117 |
+
else:
|
118 |
+
generated_text = self.generate_by_query(
|
119 |
+
prompt,
|
120 |
+
model_name,
|
121 |
+
max_length=max_length,
|
122 |
+
temperature=temperature,
|
123 |
+
top_k=top_k,
|
124 |
+
top_p=top_p,
|
125 |
+
repetition_penalty=repetition_penalty,
|
126 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
127 |
+
pad_token_id=pad_token_id,
|
128 |
+
eos_token_id=eos_token_id,
|
129 |
+
return_full_text=return_full_text,
|
130 |
+
return_text=return_text,
|
131 |
+
do_sample=do_sample,
|
132 |
+
num_beams=num_beams,
|
133 |
+
num_return_sequences=num_return_sequences,
|
134 |
+
)
|
135 |
+
# print(generated_text)
|
136 |
+
if isinstance(generated_text, dict):
|
137 |
+
if "error" in generated_text:
|
138 |
+
if "is currently loading" in generated_text["error"]:
|
139 |
+
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}"
|
140 |
+
return generated_text["error"]
|
141 |
+
else:
|
142 |
+
return "Something happened 🤷♂️!!"
|
143 |
+
else:
|
144 |
+
generated_text = generated_text[0]["generated_text"]
|
145 |
+
|
146 |
+
logger.info(f"Prompt: {prompt}")
|
147 |
+
logger.info(f"Generated text: {generated_text}")
|
148 |
+
return self.preprocessor.unpreprocess(generated_text)
|
149 |
+
|
150 |
+
def query(self, payload, model_name):
|
151 |
+
data = json.dumps(payload)
|
152 |
+
url = (
|
153 |
+
"https://api-inference.huggingface.co/models/aubmindlab/"
|
154 |
+
+ model_name.lower()
|
155 |
+
)
|
156 |
+
response = requests.request("POST", url, headers=self.headers, data=data)
|
157 |
+
return json.loads(response.content.decode("utf-8"))
|
158 |
+
|
159 |
+
def generate_by_query(
|
160 |
+
self,
|
161 |
+
prompt: str,
|
162 |
+
model_name: str,
|
163 |
+
max_length: int,
|
164 |
+
temperature: float,
|
165 |
+
top_k: int,
|
166 |
+
top_p: float,
|
167 |
+
repetition_penalty: float,
|
168 |
+
no_repeat_ngram_size: int,
|
169 |
+
pad_token_id: int,
|
170 |
+
eos_token_id: int,
|
171 |
+
return_full_text: int,
|
172 |
+
return_text: int,
|
173 |
+
do_sample: bool,
|
174 |
+
num_beams: int,
|
175 |
+
num_return_sequences: int,
|
176 |
+
):
|
177 |
+
payload = {
|
178 |
+
"inputs": prompt,
|
179 |
+
"parameters": {
|
180 |
+
"max_length ": max_length,
|
181 |
+
"top_k": top_k,
|
182 |
+
"top_p": top_p,
|
183 |
+
"temperature": temperature,
|
184 |
+
"repetition_penalty": repetition_penalty,
|
185 |
+
"no_repeat_ngram_size": no_repeat_ngram_size,
|
186 |
+
"pad_token_id": pad_token_id,
|
187 |
+
"eos_token_id": eos_token_id,
|
188 |
+
"return_full_text": return_full_text,
|
189 |
+
"return_text": return_text,
|
190 |
+
"pad_token_id": pad_token_id,
|
191 |
+
"do_sample": do_sample,
|
192 |
+
"num_beams": num_beams,
|
193 |
+
"num_return_sequences": num_return_sequences,
|
194 |
+
},
|
195 |
+
"options": {
|
196 |
+
"use_cache": True,
|
197 |
+
},
|
198 |
+
}
|
199 |
+
return self.query(payload, model_name)
|
200 |
+
|
201 |
+
|
202 |
+
class SentimentAnalyzer:
|
203 |
+
def __init__(self):
|
204 |
+
self.sa_models = [
|
205 |
+
"sa_trial5_1",
|
206 |
+
# "sa_no_aoa_in_neutral",
|
207 |
+
# "sa_cnnbert",
|
208 |
+
# "sa_sarcasm",
|
209 |
+
# "sar_trial10",
|
210 |
+
# "sa_no_AOA",
|
211 |
+
]
|
212 |
+
download_models(self.sa_models)
|
213 |
+
# fmt: off
|
214 |
+
self.processors = {
|
215 |
+
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
216 |
+
# "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
217 |
+
# "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
218 |
+
# "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
219 |
+
# "sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
220 |
+
# "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
221 |
+
}
|
222 |
+
|
223 |
+
self.pipelines = {
|
224 |
+
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
|
225 |
+
# "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
|
226 |
+
# "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
|
227 |
+
# "sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")],
|
228 |
+
# "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
|
229 |
+
# "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
|
230 |
+
}
|
231 |
+
# fmt: on
|
232 |
+
|
233 |
+
def get_preds_from_sarcasm(self, texts):
|
234 |
+
prep = self.processors["sar_trial10"]
|
235 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
236 |
+
|
237 |
+
preds_df = pd.DataFrame([])
|
238 |
+
for i in range(0, 5):
|
239 |
+
preds = []
|
240 |
+
for s in more_itertools.chunked(list(prep_texts), 128):
|
241 |
+
preds.extend(self.pipelines["sar_trial10"][i](s))
|
242 |
+
preds_df[f"model_{i}"] = preds
|
243 |
+
|
244 |
+
final_labels = []
|
245 |
+
final_scores = []
|
246 |
+
for id, row in preds_df.iterrows():
|
247 |
+
pos_total = 0
|
248 |
+
neu_total = 0
|
249 |
+
for pred in row[:]:
|
250 |
+
pos_total += pred[0]["score"]
|
251 |
+
neu_total += pred[1]["score"]
|
252 |
+
|
253 |
+
pos_avg = pos_total / len(row[:])
|
254 |
+
neu_avg = neu_total / len(row[:])
|
255 |
+
|
256 |
+
final_labels.append(
|
257 |
+
self.pipelines["sar_trial10"][0].model.config.id2label[
|
258 |
+
np.argmax([pos_avg, neu_avg])
|
259 |
+
]
|
260 |
+
)
|
261 |
+
final_scores.append(np.max([pos_avg, neu_avg]))
|
262 |
+
|
263 |
+
return final_labels, final_scores
|
264 |
+
|
265 |
+
def get_preds_from_a_model(self, texts: List[str], model_name):
|
266 |
+
try:
|
267 |
+
prep = self.processors[model_name]
|
268 |
+
|
269 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
270 |
+
if model_name == "sa_sarcasm":
|
271 |
+
sarcasm_label, _ = self.get_preds_from_sarcasm(texts)
|
272 |
+
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
|
273 |
+
labeled_prep_texts = []
|
274 |
+
for t, l in zip(prep_texts, sarcasm_label):
|
275 |
+
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
|
276 |
+
|
277 |
+
preds_df = pd.DataFrame([])
|
278 |
+
for i in range(0, 5):
|
279 |
+
preds = []
|
280 |
+
for s in more_itertools.chunked(list(prep_texts), 128):
|
281 |
+
preds.extend(self.pipelines[model_name][i](s))
|
282 |
+
preds_df[f"model_{i}"] = preds
|
283 |
+
|
284 |
+
final_labels = []
|
285 |
+
final_scores = []
|
286 |
+
final_scores_list = []
|
287 |
+
for id, row in preds_df.iterrows():
|
288 |
+
pos_total = 0
|
289 |
+
neg_total = 0
|
290 |
+
neu_total = 0
|
291 |
+
for pred in row[2:]:
|
292 |
+
pos_total += pred[0]["score"]
|
293 |
+
neu_total += pred[1]["score"]
|
294 |
+
neg_total += pred[2]["score"]
|
295 |
+
|
296 |
+
pos_avg = pos_total / 5
|
297 |
+
neu_avg = neu_total / 5
|
298 |
+
neg_avg = neg_total / 5
|
299 |
+
|
300 |
+
if model_name == "sa_no_aoa_in_neutral":
|
301 |
+
final_labels.append(
|
302 |
+
self.pipelines[model_name][0].model.config.id2label[
|
303 |
+
np.argmax([neu_avg, neg_avg, pos_avg])
|
304 |
+
]
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
final_labels.append(
|
308 |
+
self.pipelines[model_name][0].model.config.id2label[
|
309 |
+
np.argmax([pos_avg, neu_avg, neg_avg])
|
310 |
+
]
|
311 |
+
)
|
312 |
+
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
|
313 |
+
final_scores_list.append((pos_avg, neu_avg, neg_avg))
|
314 |
+
except RuntimeError as e:
|
315 |
+
if model_name == "sa_cnnbert":
|
316 |
+
return (
|
317 |
+
["Neutral"] * len(texts),
|
318 |
+
[0.0] * len(texts),
|
319 |
+
[(0.0, 0.0, 0.0)] * len(texts),
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
raise RuntimeError(e)
|
323 |
+
return final_labels, final_scores, final_scores_list
|
324 |
+
|
325 |
+
def predict(self, texts: List[str]):
|
326 |
+
logger.info(f"Predicting for: {texts}")
|
327 |
+
# (
|
328 |
+
# new_balanced_label,
|
329 |
+
# new_balanced_score,
|
330 |
+
# new_balanced_score_list,
|
331 |
+
# ) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
|
332 |
+
# (
|
333 |
+
# cnn_marbert_label,
|
334 |
+
# cnn_marbert_score,
|
335 |
+
# cnn_marbert_score_list,
|
336 |
+
# ) = self.get_preds_from_a_model(texts, "sa_cnnbert")
|
337 |
+
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
|
338 |
+
texts, "sa_trial5_1"
|
339 |
+
)
|
340 |
+
# no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
|
341 |
+
# texts, "sa_no_AOA"
|
342 |
+
# )
|
343 |
+
# sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
|
344 |
+
# texts, "sa_sarcasm"
|
345 |
+
# )
|
346 |
+
|
347 |
+
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
|
348 |
+
|
349 |
+
final_ensemble_prediction = []
|
350 |
+
final_ensemble_score = []
|
351 |
+
final_ensemble_all_score = []
|
352 |
+
for entry in zip(
|
353 |
+
# new_balanced_score_list,
|
354 |
+
# cnn_marbert_score_list,
|
355 |
+
trial5_score_list,
|
356 |
+
# no_aoa_score_list,
|
357 |
+
# sarcasm_score_list,
|
358 |
+
):
|
359 |
+
pos_score = 0
|
360 |
+
neu_score = 0
|
361 |
+
neg_score = 0
|
362 |
+
for s in entry:
|
363 |
+
pos_score += s[0] * 1.57
|
364 |
+
neu_score += s[1] * 0.98
|
365 |
+
neg_score += s[2] * 0.93
|
366 |
+
|
367 |
+
# weighted 2
|
368 |
+
# pos_score += s[0]*1.67
|
369 |
+
# neu_score += s[1]
|
370 |
+
# neg_score += s[2]*0.95
|
371 |
+
|
372 |
+
final_ensemble_prediction.append(
|
373 |
+
id_label_map[np.argmax([pos_score, neu_score, neg_score])]
|
374 |
+
)
|
375 |
+
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score]))
|
376 |
+
final_ensemble_all_score.append(
|
377 |
+
softmax(np.array([pos_score, neu_score, neg_score])).tolist()
|
378 |
+
)
|
379 |
+
|
380 |
+
logger.info(f"Result: {final_ensemble_prediction}")
|
381 |
+
logger.info(f"Score: {final_ensemble_score}")
|
382 |
+
logger.info(f"All Scores: {final_ensemble_all_score}")
|
383 |
+
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|
384 |
+
|
385 |
+
|
386 |
+
wikipedia.set_lang("ar")
|
387 |
+
|
388 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
389 |
+
|
390 |
+
preprocessor = ArabertPreprocessor("wissamantoun/araelectra-base-artydiqa")
|
391 |
+
logger.info("Loading QA Pipeline...")
|
392 |
+
tokenizer = AutoTokenizer.from_pretrained("wissamantoun/araelectra-base-artydiqa")
|
393 |
+
qa_pipe = pipeline("question-answering", model="wissamantoun/araelectra-base-artydiqa")
|
394 |
+
logger.info("Finished loading QA Pipeline...")
|
395 |
+
|
396 |
+
|
397 |
+
@lru_cache(maxsize=100)
|
398 |
+
def get_qa_answers(question):
|
399 |
+
logger.info("\n=================================================================")
|
400 |
+
logger.info(f"Question: {question}")
|
401 |
+
|
402 |
+
if "وسام أنطون" in question or "wissam antoun" in question.lower():
|
403 |
+
return {
|
404 |
+
"title": "Creator",
|
405 |
+
"results": [
|
406 |
+
{
|
407 |
+
"score": 1.0,
|
408 |
+
"new_start": 0,
|
409 |
+
"new_end": 12,
|
410 |
+
"new_answer": "My Creator 😜",
|
411 |
+
"original": "My Creator 😜",
|
412 |
+
"link": "https://github.com/WissamAntoun/",
|
413 |
+
}
|
414 |
+
],
|
415 |
+
}
|
416 |
+
search_timer = Timer(
|
417 |
+
"search and wiki", text="Search and Wikipedia Time: {:.2f}", logger=logging.info
|
418 |
+
)
|
419 |
+
try:
|
420 |
+
search_timer.start()
|
421 |
+
search_results = google.search(
|
422 |
+
question + " site:ar.wikipedia.org", lang="ar", area="ar"
|
423 |
+
)
|
424 |
+
if len(search_results) == 0:
|
425 |
+
return {}
|
426 |
+
|
427 |
+
page_name = search_results[0].link.split("wiki/")[-1]
|
428 |
+
wiki_page = wikipedia.page(unquote(page_name))
|
429 |
+
wiki_page_content = wiki_page.content
|
430 |
+
search_timer.stop()
|
431 |
+
except:
|
432 |
+
return {}
|
433 |
+
|
434 |
+
sections = []
|
435 |
+
for section in re.split("== .+ ==[^=]", wiki_page_content):
|
436 |
+
if not section.isspace():
|
437 |
+
prep_section = tokenizer.tokenize(preprocessor.preprocess(section))
|
438 |
+
if len(prep_section) > 500:
|
439 |
+
subsections = []
|
440 |
+
for subsection in re.split("=== .+ ===", section):
|
441 |
+
if subsection.isspace():
|
442 |
+
continue
|
443 |
+
prep_subsection = tokenizer.tokenize(
|
444 |
+
preprocessor.preprocess(subsection)
|
445 |
+
)
|
446 |
+
subsections.append(subsection)
|
447 |
+
# logger.info(f"Subsection found with length: {len(prep_subsection)}")
|
448 |
+
sections.extend(subsections)
|
449 |
+
else:
|
450 |
+
# logger.info(f"Regular Section with length: {len(prep_section)}")
|
451 |
+
sections.append(section)
|
452 |
+
|
453 |
+
full_len_sections = []
|
454 |
+
temp_section = ""
|
455 |
+
for section in sections:
|
456 |
+
if (
|
457 |
+
len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))
|
458 |
+
+ len(tokenizer.tokenize(preprocessor.preprocess(section)))
|
459 |
+
> 384
|
460 |
+
):
|
461 |
+
if temp_section == "":
|
462 |
+
temp_section = section
|
463 |
+
continue
|
464 |
+
full_len_sections.append(temp_section)
|
465 |
+
# logger.info(
|
466 |
+
# f"full section length: {len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))}"
|
467 |
+
# )
|
468 |
+
temp_section = ""
|
469 |
+
else:
|
470 |
+
temp_section += " " + section + " "
|
471 |
+
if temp_section != "":
|
472 |
+
full_len_sections.append(temp_section)
|
473 |
+
|
474 |
+
reader_time = Timer("electra", text="Reader Time: {:.2f}", logger=logging.info)
|
475 |
+
reader_time.start()
|
476 |
+
results = qa_pipe(
|
477 |
+
question=[preprocessor.preprocess(question)] * len(full_len_sections),
|
478 |
+
context=[preprocessor.preprocess(x) for x in full_len_sections],
|
479 |
+
)
|
480 |
+
|
481 |
+
if not isinstance(results, list):
|
482 |
+
results = [results]
|
483 |
+
|
484 |
+
logger.info(f"Wiki Title: {unquote(page_name)}")
|
485 |
+
logger.info(f"Total Sections: {len(sections)}")
|
486 |
+
logger.info(f"Total Full Sections: {len(full_len_sections)}")
|
487 |
+
|
488 |
+
for result, section in zip(results, full_len_sections):
|
489 |
+
result["original"] = section
|
490 |
+
answer_match = find_near_matches(
|
491 |
+
" " + preprocessor.unpreprocess(result["answer"]) + " ",
|
492 |
+
result["original"],
|
493 |
+
max_l_dist=min(5, len(preprocessor.unpreprocess(result["answer"])) // 2),
|
494 |
+
max_deletions=0,
|
495 |
+
)
|
496 |
+
try:
|
497 |
+
result["new_start"] = answer_match[0].start
|
498 |
+
result["new_end"] = answer_match[0].end
|
499 |
+
result["new_answer"] = answer_match[0].matched
|
500 |
+
result["link"] = (
|
501 |
+
search_results[0].link + "#:~:text=" + result["new_answer"].strip()
|
502 |
+
)
|
503 |
+
except:
|
504 |
+
result["new_start"] = result["start"]
|
505 |
+
result["new_end"] = result["end"]
|
506 |
+
result["new_answer"] = result["answer"]
|
507 |
+
result["original"] = preprocessor.preprocess(result["original"])
|
508 |
+
result["link"] = search_results[0].link
|
509 |
+
logger.info(f"Answers: {preprocessor.preprocess(result['new_answer'])}")
|
510 |
+
|
511 |
+
sorted_results = sorted(results, reverse=True, key=lambda x: x["score"])
|
512 |
+
|
513 |
+
return_dict = {}
|
514 |
+
return_dict["title"] = unquote(page_name)
|
515 |
+
return_dict["results"] = sorted_results
|
516 |
+
|
517 |
+
reader_time.stop()
|
518 |
+
logger.info(f"Total time spent: {reader_time.last + search_timer.last}")
|
519 |
+
return return_dict
|
backend/utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import numpy as np
|
3 |
+
import psutil
|
4 |
+
import os
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
import logging
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
def get_current_ram_usage():
|
12 |
+
ram = psutil.virtual_memory()
|
13 |
+
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024
|
14 |
+
|
15 |
+
|
16 |
+
def download_models(models):
|
17 |
+
for model in tqdm(models, desc="Downloading models"):
|
18 |
+
logger.info(f"Downloading {model}")
|
19 |
+
for i in range(0, 5):
|
20 |
+
curr_dir = f"{model}/train_{i}/best_model/"
|
21 |
+
os.makedirs(curr_dir, exist_ok=True)
|
22 |
+
os.system(
|
23 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/config.json -P {curr_dir}"
|
24 |
+
)
|
25 |
+
os.system(
|
26 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/pytorch_model.bin -P {curr_dir}"
|
27 |
+
)
|
28 |
+
os.system(
|
29 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/special_tokens_map.json -P {curr_dir}"
|
30 |
+
)
|
31 |
+
os.system(
|
32 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/tokenizer_config.json -P {curr_dir}"
|
33 |
+
)
|
34 |
+
os.system(
|
35 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/training_args.bin -P {curr_dir}"
|
36 |
+
)
|
37 |
+
os.system(
|
38 |
+
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/vocab.txt -P {curr_dir}"
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def softmax(x):
|
43 |
+
return np.exp(x) / sum(np.exp(x))
|
44 |
+
|
45 |
+
|
46 |
+
def ga(file):
|
47 |
+
code = """
|
48 |
+
<!-- Global site tag (gtag.js) - Google Analytics -->
|
49 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NH9HWCW08F"></script>
|
50 |
+
<script>
|
51 |
+
window.dataLayer = window.dataLayer || [];
|
52 |
+
function gtag(){dataLayer.push(arguments);}
|
53 |
+
gtag('js', new Date());
|
54 |
+
gtag('config', 'G-NH9HWCW08F');
|
55 |
+
</script>
|
56 |
+
"""
|
57 |
+
|
58 |
+
a = os.path.dirname(file) + "/static/index.html"
|
59 |
+
with open(a, "r") as f:
|
60 |
+
data = f.read()
|
61 |
+
if len(re.findall("G-", data)) == 0:
|
62 |
+
with open(a, "w") as ff:
|
63 |
+
newdata = re.sub("<head>", "<head>" + code, data)
|
64 |
+
ff.write(newdata)
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
openjdk-11-jre
|
2 |
+
curl
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.84.2
|
2 |
+
arabic-reshaper==2.1.3
|
3 |
+
python-bidi==0.4.2
|
4 |
+
PyArabic
|
5 |
+
farasapy==0.0.14
|
6 |
+
emoji==1.4.2
|
7 |
+
awesome_streamlit
|
8 |
+
torch==1.9.0
|
9 |
+
transformers==4.10.0
|
10 |
+
psutil==5.8.0
|
11 |
+
fuzzysearch==0.7.3
|
12 |
+
more-itertools==8.9.0
|
13 |
+
cookiecutter
|
14 |
+
git+https://github.com/dantru7/Google-Search-API
|
15 |
+
codetiming==1.3.0
|
16 |
+
htbuilder
|
17 |
+
wikipedia==1.4.0
|
test.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
from transformers import GPT2Tokenizer
|
3 |
+
|
4 |
+
# %%
|
5 |
+
tok = GPT2Tokenizer.from_pretrained("D:/ML/Models/aragpt2-medium", use_fast=False)
|
6 |
+
# %%
|
7 |
+
tok.pad_token = tok.eos_token
|
8 |
+
#%%
|
9 |
+
tok.pad_token_id = [tok.eos_token_id]
|
10 |
+
# %%
|