HPSv2 / src /open_clip /loss.py
tgxs002's picture
init
54199b6
raw
history blame
10.7 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.utils.rnn import pad_sequence
try:
import torch.distributed.nn
from torch import distributed as dist
has_distributed = True
except ImportError:
has_distributed = False
try:
import horovod.torch as hvd
except ImportError:
hvd = None
def gather_features(
image_features,
text_features,
local_loss=False,
gather_with_grad=False,
rank=0,
world_size=1,
use_horovod=False
):
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
if use_horovod:
assert hvd is not None, 'Please install horovod'
if gather_with_grad:
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
else:
with torch.no_grad():
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
else:
# We gather tensors from all gpus
if gather_with_grad:
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
else:
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
dist.all_gather(gathered_image_features, image_features)
dist.all_gather(gathered_text_features, text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
return all_image_features, all_text_features
class ClipLoss(nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
# cache state
self.prev_num_logits = 0
self.labels = {}
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
# calculated ground-truth and cache if enabled
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
return labels
def get_logits(self, image_features, text_features, logit_scale):
if self.world_size > 1:
all_image_features, all_text_features = gather_features(
image_features, text_features,
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
if self.local_loss:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = logit_scale * all_image_features @ all_text_features.T
logits_per_text = logits_per_image.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
return logits_per_image, logits_per_text
def forward(self, image_features, text_features, logit_scale, output_dict=False):
device = image_features.device
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
labels = self.get_ground_truth(device, logits_per_image.shape[0])
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return total_loss
class PreferenceLoss(nn.Module):
def forward(self, logits_per_image, num_images, labels):
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
ce_loss = F.cross_entropy(paired_logits, labels)
return ce_loss
class HPSLoss(nn.Module):
def forward(self, text_logits, labels):
device = text_logits.device
text_0_logits, text_1_logits = text_logits.chunk(2, dim=-1)
label_0, label_1 = labels.chunk(2, dim=-1)
index = torch.arange(text_0_logits.shape[0], device=device, dtype=torch.long)
text_0_logits = text_0_logits[index, index]
text_1_logits = text_1_logits[index, index]
text_logits = torch.stack([text_0_logits, text_1_logits], dim=-1)
text_0_labels = torch.zeros(text_logits.shape[0], device=device, dtype=torch.long)
text_1_labels = text_0_labels + 1
text_0_loss = torch.nn.functional.cross_entropy(text_logits, text_0_labels, reduction="none")
text_1_loss = torch.nn.functional.cross_entropy(text_logits, text_1_labels, reduction="none")
text_loss = label_0 * text_0_loss + label_1 * text_1_loss
# absolute_example_weight = 1 / num_per_prompt
# denominator = absolute_example_weight.sum()
# weight_per_example = absolute_example_weight / denominator
# text_loss *= weight_per_example
text_loss = text_loss.sum()
return text_loss
class RankingLoss(nn.Module):
def forward(self, logits_per_image, num_images, labels, margin = 1.0):
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
label_list = [label for label in labels.split(num_images.tolist())]
# ranked_logits = [torch.index_select(paired_logits_list[i], 0, rank) for i, rank in enumerate(label_list)]
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-1)
padded_labels = pad_sequence(label_list, batch_first=True, padding_value=10)
# regulized_logits = torch.log(torch.sigmoid(paired_logits))
diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
# diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
# diff_label = torch.clamp(padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2), min=-1, max=1)
diff_label = - (padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2))
mask = torch.triu(torch.ones(diff.shape[1], diff.shape[1]), diagonal=1).bool().detach()
loss = torch.clamp(margin - torch.mul(diff[:, ~mask],diff_label[:,~mask]), min=0).mean()
return loss
class CoCaLoss(ClipLoss):
def __init__(
self,
caption_loss_weight,
clip_loss_weight,
pad_id=0, # pad_token for open_clip custom tokenizer
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__(
local_loss=local_loss,
gather_with_grad=gather_with_grad,
cache_labels=cache_labels,
rank=rank,
world_size=world_size,
use_horovod=use_horovod
)
self.clip_loss_weight = clip_loss_weight
self.caption_loss_weight = caption_loss_weight
self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id)
def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False):
clip_loss = super().forward(image_features, text_features, logit_scale)
clip_loss = self.clip_loss_weight * clip_loss
caption_loss = self.caption_loss(
logits.permute(0, 2, 1),
labels,
)
caption_loss = caption_loss * self.caption_loss_weight
if output_dict:
return {"contrastive_loss": clip_loss, "caption_loss": caption_loss}
return clip_loss, caption_loss
class DistillClipLoss(ClipLoss):
def dist_loss(self, teacher_logits, student_logits):
return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
def forward(
self,
image_features,
text_features,
logit_scale,
dist_image_features,
dist_text_features,
dist_logit_scale,
output_dict=False,
):
logits_per_image, logits_per_text = \
self.get_logits(image_features, text_features, logit_scale)
dist_logits_per_image, dist_logits_per_text = \
self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0])
contrastive_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
distill_loss = (
self.dist_loss(dist_logits_per_image, logits_per_image) +
self.dist_loss(dist_logits_per_text, logits_per_text)
) / 2
if output_dict:
return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
return contrastive_loss, distill_loss