MedQA-Assistant / qa_model.py
xpsychted's picture
Update qa_model.py
e8cbecb
raw
history blame
1.67 kB
import os
import torch
from transformers import AutoModel, AutoConfig
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
class QAModel():
def __init__(self, checkpoint="google/flan-t5-xl"):
self.checkpoint = checkpoint
self.tmpdir = f"{self.checkpoint.split('/')[-1]}-sharded"
def store_sharded_model(self):
tmpdir = self.tmpdir
checkpoint = self.checkpoint
if not os.path.exists(tmpdir):
os.mkdir(tmpdir)
print(f"Directory created - {tmpdir}")
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
print(f"Model loaded - {checkpoint}")
model.save_pretrained(tmpdir, max_shard_size="200MB")
def load_sharded_model(self):
tmpdir = self.tmpdir
if not os.path.exists(tmpdir):
self.store_sharded_model()
checkpoint = self.checkpoint
config = AutoConfig.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
with init_empty_weights():
model = AutoModelForSeq2SeqLM.from_config(config)
# model = AutoModelForSeq2SeqLM.from_pretrained(tmpdir)
model = load_checkpoint_and_dispatch(model, checkpoint=tmpdir, device_map="auto")
return model, tokenizer
def query_model(self, model, tokenizer, query):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
return tokenizer.batch_decode(model.generate(**tokenizer(query, return_tensors='pt').to(device)), skip_special_tokens=True)[0]