xpsychted commited on
Commit
e8cbecb
1 Parent(s): 5758a81

Update qa_model.py

Browse files
Files changed (1) hide show
  1. qa_model.py +45 -0
qa_model.py CHANGED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ from transformers import AutoModel, AutoConfig
5
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
+ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
7
+
8
+ class QAModel():
9
+ def __init__(self, checkpoint="google/flan-t5-xl"):
10
+ self.checkpoint = checkpoint
11
+ self.tmpdir = f"{self.checkpoint.split('/')[-1]}-sharded"
12
+
13
+ def store_sharded_model(self):
14
+ tmpdir = self.tmpdir
15
+
16
+ checkpoint = self.checkpoint
17
+
18
+ if not os.path.exists(tmpdir):
19
+ os.mkdir(tmpdir)
20
+ print(f"Directory created - {tmpdir}")
21
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
22
+ print(f"Model loaded - {checkpoint}")
23
+ model.save_pretrained(tmpdir, max_shard_size="200MB")
24
+
25
+ def load_sharded_model(self):
26
+ tmpdir = self.tmpdir
27
+ if not os.path.exists(tmpdir):
28
+ self.store_sharded_model()
29
+
30
+ checkpoint = self.checkpoint
31
+
32
+
33
+ config = AutoConfig.from_pretrained(checkpoint)
34
+
35
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
36
+ with init_empty_weights():
37
+ model = AutoModelForSeq2SeqLM.from_config(config)
38
+ # model = AutoModelForSeq2SeqLM.from_pretrained(tmpdir)
39
+
40
+ model = load_checkpoint_and_dispatch(model, checkpoint=tmpdir, device_map="auto")
41
+ return model, tokenizer
42
+
43
+ def query_model(self, model, tokenizer, query):
44
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
45
+ return tokenizer.batch_decode(model.generate(**tokenizer(query, return_tensors='pt').to(device)), skip_special_tokens=True)[0]