|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
|
|
|
|
def write_model_card(model_card_dir, src_lang, tgt_lang): |
|
|
|
texts = { |
|
"en": "Machine learning is great, isn't it?", |
|
"ru": "Машинное обучение - это здорово, не так ли?", |
|
"de": "Maschinelles Lernen ist großartig, oder?", |
|
} |
|
|
|
|
|
|
|
scores = { |
|
"ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], |
|
"en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], |
|
"en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], |
|
"de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], |
|
} |
|
pair = f"{src_lang}-{tgt_lang}" |
|
|
|
readme = f""" |
|
--- |
|
language: |
|
- {src_lang} |
|
- {tgt_lang} |
|
thumbnail: |
|
tags: |
|
- translation |
|
- wmt19 |
|
- facebook |
|
license: apache-2.0 |
|
datasets: |
|
- wmt19 |
|
metrics: |
|
- bleu |
|
--- |
|
|
|
# FSMT |
|
|
|
## Model description |
|
|
|
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. |
|
|
|
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). |
|
|
|
The abbreviation FSMT stands for FairSeqMachineTranslation |
|
|
|
All four models are available: |
|
|
|
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) |
|
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) |
|
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) |
|
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) |
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
```python |
|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer |
|
mname = "facebook/wmt19-{src_lang}-{tgt_lang}" |
|
tokenizer = FSMTTokenizer.from_pretrained(mname) |
|
model = FSMTForConditionalGeneration.from_pretrained(mname) |
|
|
|
input = "{texts[src_lang]}" |
|
input_ids = tokenizer.encode(input, return_tensors="pt") |
|
outputs = model.generate(input_ids) |
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(decoded) # {texts[tgt_lang]} |
|
|
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) |
|
|
|
## Training data |
|
|
|
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). |
|
|
|
## Eval results |
|
|
|
pair | fairseq | transformers |
|
-------|---------|---------- |
|
{pair} | {scores[pair][0]} | {scores[pair][1]} |
|
|
|
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: |
|
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). |
|
- re-ranking |
|
|
|
The score was calculated using this code: |
|
|
|
```bash |
|
git clone https://github.com/huggingface/transformers |
|
cd transformers |
|
export PAIR={pair} |
|
export DATA_DIR=data/$PAIR |
|
export SAVE_DIR=data/$PAIR |
|
export BS=8 |
|
export NUM_BEAMS=15 |
|
mkdir -p $DATA_DIR |
|
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source |
|
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target |
|
echo $PAIR |
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS |
|
``` |
|
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. |
|
|
|
## Data Sources |
|
|
|
- [training, etc.](http://www.statmt.org/wmt19/) |
|
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{{..., |
|
year={{2020}}, |
|
title={{Facebook FAIR's WMT19 News Translation Task Submission}}, |
|
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, |
|
booktitle={{Proc. of WMT}}, |
|
}} |
|
``` |
|
|
|
|
|
## TODO |
|
|
|
- port model ensemble (fairseq uses 4 model checkpoints) |
|
|
|
""" |
|
os.makedirs(model_card_dir, exist_ok=True) |
|
path = os.path.join(model_card_dir, "README.md") |
|
print(f"Generating {path}") |
|
with open(path, "w", encoding="utf-8") as f: |
|
f.write(readme) |
|
|
|
|
|
repo_dir = Path(__file__).resolve().parent.parent.parent |
|
model_cards_dir = repo_dir / "model_cards" |
|
|
|
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: |
|
base, src_lang, tgt_lang = model_name.split("-") |
|
model_card_dir = model_cards_dir / "facebook" / model_name |
|
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang) |
|
|