|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
|
|
|
|
SRC_DIR = os.path.join(os.path.dirname(__file__), "src") |
|
sys.path.append(SRC_DIR) |
|
|
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForMaskedLM, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
add_start_docstrings, |
|
) |
|
|
|
|
|
dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub"] |
|
|
|
|
|
@add_start_docstrings(AutoConfig.__doc__) |
|
def config(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased') # Download configuration from huggingface.co and cache. |
|
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` |
|
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json') |
|
config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False) |
|
assert config.output_attentions == True |
|
config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True) |
|
assert config.output_attentions == True |
|
assert unused_kwargs == {'foo': False} |
|
|
|
""" |
|
|
|
return AutoConfig.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoTokenizer.__doc__) |
|
def tokenizer(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'google-bert/bert-base-uncased') # Download vocabulary from huggingface.co and cache. |
|
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')` |
|
|
|
""" |
|
|
|
return AutoTokenizer.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoModel.__doc__) |
|
def model(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache. |
|
model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading |
|
assert model.config.output_attentions == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') |
|
model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
|
|
return AutoModel.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoModelForCausalLM.__doc__) |
|
def modelForCausalLM(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2') # Download model and configuration from huggingface.co and cache. |
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2', output_attentions=True) # Update configuration during loading |
|
assert model.config.output_attentions == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = AutoConfig.from_pretrained('./tf_model/gpt_tf_model_config.json') |
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './tf_model/gpt_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
return AutoModelForCausalLM.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoModelForMaskedLM.__doc__) |
|
def modelForMaskedLM(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache. |
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading |
|
assert model.config.output_attentions == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') |
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
|
|
return AutoModelForMaskedLM.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoModelForSequenceClassification.__doc__) |
|
def modelForSequenceClassification(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache. |
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading |
|
assert model.config.output_attentions == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') |
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
|
|
return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs) |
|
|
|
|
|
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__) |
|
def modelForQuestionAnswering(*args, **kwargs): |
|
r""" |
|
# Using torch.hub ! |
|
import torch |
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache. |
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` |
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading |
|
assert model.config.output_attentions == True |
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower) |
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json') |
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) |
|
|
|
""" |
|
return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs) |
|
|