Spaces:
Runtime error
Runtime error
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Callable, Dict, List, Optional, Union | |
| import PIL.Image | |
| import einops | |
| import numpy as np | |
| import torch | |
| from diffusers.image_processor import VaeImageProcessor, PipelineImageInput | |
| from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps | |
| from diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion \ | |
| import _resize_with_antialiasing, _append_dims | |
| from diffusers.schedulers import EulerDiscreteScheduler | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from ..modules.pose_net import PoseNet | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def _append_dims(x, target_dims): | |
| """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
| dims_to_append = target_dims - x.ndim | |
| if dims_to_append < 0: | |
| raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") | |
| return x[(...,) + (None,) * dims_to_append] | |
| # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
| def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): | |
| batch_size, channels, num_frames, height, width = video.shape | |
| outputs = [] | |
| for batch_idx in range(batch_size): | |
| batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
| batch_output = processor.postprocess(batch_vid, output_type) | |
| outputs.append(batch_output) | |
| if output_type == "np": | |
| outputs = np.stack(outputs) | |
| elif output_type == "pt": | |
| outputs = torch.stack(outputs) | |
| elif not output_type == "pil": | |
| raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]") | |
| return outputs | |
| class MimicMotionPipelineOutput(BaseOutput): | |
| r""" | |
| Output class for mimicmotion pipeline. | |
| Args: | |
| frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]): | |
| List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, | |
| num_frames, height, width, num_channels)`. | |
| """ | |
| frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor] | |
| class MimicMotionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline to generate video from an input image using Stable Video Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKLTemporalDecoder`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): | |
| Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K] | |
| (https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)). | |
| unet ([`UNetSpatioTemporalConditionModel`]): | |
| A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents. | |
| scheduler ([`EulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images. | |
| pose_net ([`PoseNet`]): | |
| A `` to inject pose signals into unet. | |
| """ | |
| model_cpu_offload_seq = "image_encoder->unet->vae" | |
| _callback_tensor_inputs = ["latents"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKLTemporalDecoder, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| unet: UNetSpatioTemporalConditionModel, | |
| scheduler: EulerDiscreteScheduler, | |
| feature_extractor: CLIPImageProcessor, | |
| pose_net: PoseNet, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| pose_net=pose_net, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def _encode_image( | |
| self, | |
| image: PipelineImageInput, | |
| device: Union[str, torch.device], | |
| num_videos_per_prompt: int, | |
| do_classifier_free_guidance: bool): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.image_processor.pil_to_numpy(image) | |
| image = self.image_processor.numpy_to_pt(image) | |
| # We normalize the image before resizing to match with the original implementation. | |
| # Then we unnormalize it after resizing. | |
| image = image * 2.0 - 1.0 | |
| image = _resize_with_antialiasing(image, (224, 224)) | |
| image = (image + 1.0) / 2.0 | |
| # Normalize the image with for CLIP input | |
| image = self.feature_extractor( | |
| images=image, | |
| do_normalize=True, | |
| do_center_crop=False, | |
| do_resize=False, | |
| do_rescale=False, | |
| return_tensors="pt", | |
| ).pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_image_embeddings = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) | |
| return image_embeddings | |
| def _encode_vae_image( | |
| self, | |
| image: torch.Tensor, | |
| device: Union[str, torch.device], | |
| num_videos_per_prompt: int, | |
| do_classifier_free_guidance: bool, | |
| ): | |
| image = image.to(device=device, dtype=self.vae.dtype) | |
| image_latents = self.vae.encode(image).latent_dist.mode() | |
| if do_classifier_free_guidance: | |
| negative_image_latents = torch.zeros_like(image_latents) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_latents = torch.cat([negative_image_latents, image_latents]) | |
| # duplicate image_latents for each generation per prompt, using mps friendly method | |
| image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) | |
| return image_latents | |
| def _get_add_time_ids( | |
| self, | |
| fps: int, | |
| motion_bucket_id: int, | |
| noise_aug_strength: float, | |
| dtype: torch.dtype, | |
| batch_size: int, | |
| num_videos_per_prompt: int, | |
| do_classifier_free_guidance: bool, | |
| ): | |
| add_time_ids = [fps, motion_bucket_id, noise_aug_strength] | |
| passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, " \ | |
| f"but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. " \ | |
| f"Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| add_time_ids = torch.cat([add_time_ids, add_time_ids]) | |
| return add_time_ids | |
| def decode_latents( | |
| self, | |
| latents: torch.Tensor, | |
| num_frames: int, | |
| decode_chunk_size: int = 8): | |
| # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width] | |
| latents = latents.flatten(0, 1) | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward | |
| accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys()) | |
| # decode decode_chunk_size frames at a time to avoid OOM | |
| frames = [] | |
| for i in range(0, latents.shape[0], decode_chunk_size): | |
| num_frames_in = latents[i: i + decode_chunk_size].shape[0] | |
| decode_kwargs = {} | |
| if accepts_num_frames: | |
| # we only pass num_frames_in if it's expected | |
| decode_kwargs["num_frames"] = num_frames_in | |
| frame = self.vae.decode(latents[i: i + decode_chunk_size], **decode_kwargs).sample | |
| frames.append(frame.cpu()) | |
| frames = torch.cat(frames, dim=0) | |
| # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] | |
| frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| frames = frames.float() | |
| return frames | |
| def check_inputs(self, image, height, width): | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
| f" {type(image)}" | |
| ) | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| def prepare_latents( | |
| self, | |
| batch_size: int, | |
| num_frames: int, | |
| num_channels_latents: int, | |
| height: int, | |
| width: int, | |
| dtype: torch.dtype, | |
| device: Union[str, torch.device], | |
| generator: torch.Generator, | |
| latents: Optional[torch.Tensor] = None, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_frames, | |
| num_channels_latents // 2, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| if isinstance(self.guidance_scale, (int, float)): | |
| return self.guidance_scale > 1 | |
| return self.guidance_scale.max() > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def __call__( | |
| self, | |
| image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor], | |
| image_pose: Union[torch.FloatTensor], | |
| height: int = 576, | |
| width: int = 1024, | |
| num_frames: Optional[int] = None, | |
| tile_size: Optional[int] = 16, | |
| tile_overlap: Optional[int] = 4, | |
| num_inference_steps: int = 25, | |
| min_guidance_scale: float = 1.0, | |
| max_guidance_scale: float = 3.0, | |
| fps: int = 7, | |
| motion_bucket_id: int = 127, | |
| noise_aug_strength: float = 0.02, | |
| image_only_indicator: bool = False, | |
| decode_chunk_size: Optional[int] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| return_dict: bool = True, | |
| device: Union[str, torch.device] =None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
| Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
| [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/ | |
| feature_extractor/preprocessor_config.json). | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_frames (`int`, *optional*): | |
| The number of video frames to generate. Defaults to 14 for `stable-video-diffusion-img2vid` | |
| and to 25 for `stable-video-diffusion-img2vid-xt` | |
| num_inference_steps (`int`, *optional*, defaults to 25): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| min_guidance_scale (`float`, *optional*, defaults to 1.0): | |
| The minimum guidance scale. Used for the classifier free guidance with first frame. | |
| max_guidance_scale (`float`, *optional*, defaults to 3.0): | |
| The maximum guidance scale. Used for the classifier free guidance with last frame. | |
| fps (`int`, *optional*, defaults to 7): | |
| Frames per second.The rate at which the generated images shall be exported to a video after generation. | |
| Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training. | |
| motion_bucket_id (`int`, *optional*, defaults to 127): | |
| The motion bucket ID. Used as conditioning for the generation. | |
| The higher the number the more motion will be in the video. | |
| noise_aug_strength (`float`, *optional*, defaults to 0.02): | |
| The amount of noise added to the init image, | |
| the higher it is the less the video will look like the init image. Increase it for more motion. | |
| image_only_indicator (`bool`, *optional*, defaults to False): | |
| Whether to treat the inputs as batch of images instead of videos. | |
| decode_chunk_size (`int`, *optional*): | |
| The number of frames to decode at a time.The higher the chunk size, the higher the temporal consistency | |
| between frames, but also the higher the memory consumption. | |
| By default, the decoder will decode all frames at once for maximal quality. | |
| Reduce `decode_chunk_size` to reduce memory usage. | |
| num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| device: | |
| On which device the pipeline runs on. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, | |
| [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list of list with the generated frames. | |
| Examples: | |
| ```py | |
| from diffusers import StableVideoDiffusionPipeline | |
| from diffusers.utils import load_image, export_to_video | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16") | |
| pipe.to("cuda") | |
| image = load_image( | |
| "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200") | |
| image = image.resize((1024, 576)) | |
| frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0] | |
| export_to_video(frames, "generated.mp4", fps=7) | |
| ``` | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_frames = num_frames if num_frames is not None else self.unet.config.num_frames | |
| decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(image, height, width) | |
| # 2. Define call parameters | |
| if isinstance(image, PIL.Image.Image): | |
| batch_size = 1 | |
| elif isinstance(image, list): | |
| batch_size = len(image) | |
| else: | |
| batch_size = image.shape[0] | |
| device = device if device is not None else self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| self._guidance_scale = max_guidance_scale | |
| # 3. Encode input image | |
| self.image_encoder.to(device) | |
| image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance) | |
| self.image_encoder.cpu() | |
| # NOTE: Stable Diffusion Video was conditioned on fps - 1, which | |
| # is why it is reduced here. | |
| fps = fps - 1 | |
| # 4. Encode input image using VAE | |
| image = self.image_processor.preprocess(image, height=height, width=width).to(device) | |
| noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype) | |
| image = image + noise_aug_strength * noise | |
| self.vae.to(device) | |
| image_latents = self._encode_vae_image( | |
| image, | |
| device=device, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| image_latents = image_latents.to(image_embeddings.dtype) | |
| self.vae.cpu() | |
| # Repeat the image latents for each frame so we can concatenate them with the noise | |
| # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width] | |
| image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1) | |
| # 5. Get Added Time IDs | |
| added_time_ids = self._get_add_time_ids( | |
| fps, | |
| motion_bucket_id, | |
| noise_aug_strength, | |
| image_embeddings.dtype, | |
| batch_size, | |
| num_videos_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| added_time_ids = added_time_ids.to(device) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| tile_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| latents = latents.repeat(1, num_frames // tile_size + 1, 1, 1, 1)[:, :num_frames] | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
| # 7. Prepare guidance scale | |
| guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) | |
| guidance_scale = guidance_scale.to(device, latents.dtype) | |
| guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) | |
| guidance_scale = _append_dims(guidance_scale, latents.ndim) | |
| self._guidance_scale = guidance_scale | |
| # 8. Denoising loop | |
| self._num_timesteps = len(timesteps) | |
| indices = [[0, *range(i + 1, min(i + tile_size, num_frames))] for i in | |
| range(0, num_frames - tile_size + 1, tile_size - tile_overlap)] | |
| if indices[-1][-1] < num_frames - 1: | |
| indices.append([0, *range(num_frames - tile_size + 1, num_frames)]) | |
| self.pose_net.to(device) | |
| self.unet.to(device) | |
| with torch.cuda.device(device): | |
| torch.cuda.empty_cache() | |
| with self.progress_bar(total=len(timesteps) * len(indices)) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # Concatenate image_latents over channels dimension | |
| latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) | |
| # predict the noise residual | |
| noise_pred = torch.zeros_like(image_latents) | |
| noise_pred_cnt = image_latents.new_zeros((num_frames,)) | |
| weight = (torch.arange(tile_size, device=device) + 0.5) * 2. / tile_size | |
| weight = torch.minimum(weight, 2 - weight) | |
| for idx in indices: | |
| # classification-free inference | |
| pose_latents = self.pose_net(image_pose[idx].to(device)) | |
| _noise_pred = self.unet( | |
| latent_model_input[:1, idx], | |
| t, | |
| encoder_hidden_states=image_embeddings[:1], | |
| added_time_ids=added_time_ids[:1], | |
| pose_latents=None, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| noise_pred[:1, idx] += _noise_pred * weight[:, None, None, None] | |
| # normal inference | |
| _noise_pred = self.unet( | |
| latent_model_input[1:, idx], | |
| t, | |
| encoder_hidden_states=image_embeddings[1:], | |
| added_time_ids=added_time_ids[1:], | |
| pose_latents=pose_latents, | |
| image_only_indicator=image_only_indicator, | |
| return_dict=False, | |
| )[0] | |
| noise_pred[1:, idx] += _noise_pred * weight[:, None, None, None] | |
| noise_pred_cnt[idx] += weight | |
| progress_bar.update() | |
| noise_pred.div_(noise_pred_cnt[:, None, None, None]) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| self.pose_net.cpu() | |
| self.unet.cpu() | |
| if not output_type == "latent": | |
| self.vae.decoder.to(device) | |
| frames = self.decode_latents(latents, num_frames, decode_chunk_size) | |
| frames = tensor2vid(frames, self.image_processor, output_type=output_type) | |
| else: | |
| frames = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return frames | |
| return MimicMotionPipelineOutput(frames=frames) | |