Spaces:
Sleeping
Sleeping
import json | |
import cv2 | |
import numpy as np | |
import os | |
from torch.utils.data import Dataset | |
from PIL import Image | |
import cv2 | |
from .data_utils import * | |
from .base import BaseDataset | |
from pycocotools import mask as mask_utils | |
class SAMDataset(BaseDataset): | |
def __init__(self, sub1, sub2, sub3, sub4): | |
image_mask_dict = {} | |
self.data = [] | |
self.register_subset(sub1) | |
self.register_subset(sub2) | |
self.register_subset(sub3) | |
self.register_subset(sub4) | |
self.size = (512,512) | |
self.clip_size = (224,224) | |
self.dynamic = 0 | |
def register_subset(self, path): | |
data = os.listdir(path) | |
data = [ os.path.join(path, i) for i in data if '.json' in i] | |
self.data = self.data + data | |
def get_sample(self, idx): | |
# ==== get pairs ===== | |
json_path = self.data[idx] | |
image_path = json_path.replace('.json', '.jpg') | |
with open(json_path, 'r') as json_file: | |
data = json.load(json_file) | |
annotation = data['annotations'] | |
valid_ids = [] | |
for i in range(len(annotation)): | |
area = annotation[i]['area'] | |
if area > 100 * 100 * 5: | |
valid_ids.append(i) | |
chosen_id = np.random.choice(valid_ids) | |
mask = mask_utils.decode(annotation[chosen_id]["segmentation"] ) | |
# ====================== | |
image = cv2.imread(image_path) | |
ref_image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB) | |
tar_image = ref_image | |
ref_mask = mask | |
tar_mask = mask | |
item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) | |
sampled_time_steps = self.sample_timestep() | |
item_with_collage['time_steps'] = sampled_time_steps | |
return item_with_collage | |
def __len__(self): | |
return 20000 | |
def check_region_size(self, image, yyxx, ratio, mode = 'max'): | |
pass_flag = True | |
H,W = image.shape[0], image.shape[1] | |
H,W = H * ratio, W * ratio | |
y1,y2,x1,x2 = yyxx | |
h,w = y2-y1,x2-x1 | |
if mode == 'max': | |
if h > H or w > W: | |
pass_flag = False | |
elif mode == 'min': | |
if h < H or w < W: | |
pass_flag = False | |
return pass_flag | |