import json import cv2 import numpy as np import os from torch.utils.data import Dataset from PIL import Image import cv2 from .data_utils import * from .base import BaseDataset from pycocotools import mask as mask_utils class SAMDataset(BaseDataset): def __init__(self, sub1, sub2, sub3, sub4): image_mask_dict = {} self.data = [] self.register_subset(sub1) self.register_subset(sub2) self.register_subset(sub3) self.register_subset(sub4) self.size = (512,512) self.clip_size = (224,224) self.dynamic = 0 def register_subset(self, path): data = os.listdir(path) data = [ os.path.join(path, i) for i in data if '.json' in i] self.data = self.data + data def get_sample(self, idx): # ==== get pairs ===== json_path = self.data[idx] image_path = json_path.replace('.json', '.jpg') with open(json_path, 'r') as json_file: data = json.load(json_file) annotation = data['annotations'] valid_ids = [] for i in range(len(annotation)): area = annotation[i]['area'] if area > 100 * 100 * 5: valid_ids.append(i) chosen_id = np.random.choice(valid_ids) mask = mask_utils.decode(annotation[chosen_id]["segmentation"] ) # ====================== image = cv2.imread(image_path) ref_image = cv2.cvtColor(image.copy(), cv2.COLOR_BGR2RGB) tar_image = ref_image ref_mask = mask tar_mask = mask item_with_collage = self.process_pairs(ref_image, ref_mask, tar_image, tar_mask) sampled_time_steps = self.sample_timestep() item_with_collage['time_steps'] = sampled_time_steps return item_with_collage def __len__(self): return 20000 def check_region_size(self, image, yyxx, ratio, mode = 'max'): pass_flag = True H,W = image.shape[0], image.shape[1] H,W = H * ratio, W * ratio y1,y2,x1,x2 = yyxx h,w = y2-y1,x2-x1 if mode == 'max': if h > H or w > W: pass_flag = False elif mode == 'min': if h < H or w < W: pass_flag = False return pass_flag