|
import argparse |
|
import glob |
|
import json |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import yaml |
|
from tqdm import tqdm |
|
|
|
from models.experimental import attempt_load |
|
from utils.datasets import create_dataloader |
|
from utils.general import ( |
|
coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression, scale_coords, |
|
xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class, set_logging) |
|
from utils.torch_utils import select_device, time_synchronized |
|
|
|
|
|
from sotabencheval.object_detection import COCOEvaluator |
|
from sotabencheval.utils import is_server |
|
|
|
DATA_ROOT = './.data/vision/coco' if is_server() else '../coco' |
|
|
|
|
|
def test(data, |
|
weights=None, |
|
batch_size=16, |
|
imgsz=640, |
|
conf_thres=0.001, |
|
iou_thres=0.6, |
|
save_json=False, |
|
single_cls=False, |
|
augment=False, |
|
verbose=False, |
|
model=None, |
|
dataloader=None, |
|
save_dir='', |
|
merge=False, |
|
save_txt=False): |
|
|
|
training = model is not None |
|
if training: |
|
device = next(model.parameters()).device |
|
|
|
else: |
|
set_logging() |
|
device = select_device(opt.device, batch_size=batch_size) |
|
merge, save_txt = opt.merge, opt.save_txt |
|
if save_txt: |
|
out = Path('inference/output') |
|
if os.path.exists(out): |
|
shutil.rmtree(out) |
|
os.makedirs(out) |
|
|
|
|
|
for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')): |
|
os.remove(f) |
|
|
|
|
|
model = attempt_load(weights, map_location=device) |
|
imgsz = check_img_size(imgsz, s=model.stride.max()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
half = device.type != 'cpu' |
|
if half: |
|
model.half() |
|
|
|
|
|
model.eval() |
|
with open(data) as f: |
|
data = yaml.load(f, Loader=yaml.FullLoader) |
|
check_dataset(data) |
|
nc = 1 if single_cls else int(data['nc']) |
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) |
|
niou = iouv.numel() |
|
|
|
|
|
if not training: |
|
img = torch.zeros((1, 3, imgsz, imgsz), device=device) |
|
_ = model(img.half() if half else img) if device.type != 'cpu' else None |
|
path = data['test'] if opt.task == 'test' else data['val'] |
|
dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, |
|
hyp=None, augment=False, cache=True, pad=0.5, rect=True)[0] |
|
|
|
seen = 0 |
|
names = model.names if hasattr(model, 'names') else model.module.names |
|
coco91class = coco80_to_coco91_class() |
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') |
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. |
|
loss = torch.zeros(3, device=device) |
|
jdict, stats, ap, ap_class = [], [], [], [] |
|
evaluator = COCOEvaluator(root=DATA_ROOT, model_name=opt.weights.replace('.pt', '')) |
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): |
|
img = img.to(device, non_blocking=True) |
|
img = img.half() if half else img.float() |
|
img /= 255.0 |
|
targets = targets.to(device) |
|
nb, _, height, width = img.shape |
|
whwh = torch.Tensor([width, height, width, height]).to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
t = time_synchronized() |
|
inf_out, train_out = model(img, augment=augment) |
|
t0 += time_synchronized() - t |
|
|
|
|
|
if training: |
|
loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] |
|
|
|
|
|
t = time_synchronized() |
|
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge) |
|
t1 += time_synchronized() - t |
|
|
|
|
|
for si, pred in enumerate(output): |
|
labels = targets[targets[:, 0] == si, 1:] |
|
nl = len(labels) |
|
tcls = labels[:, 0].tolist() if nl else [] |
|
seen += 1 |
|
|
|
if pred is None: |
|
if nl: |
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) |
|
continue |
|
|
|
|
|
if save_txt: |
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] |
|
x = pred.clone() |
|
x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) |
|
for *xyxy, conf, cls in x: |
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() |
|
with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: |
|
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) |
|
|
|
|
|
clip_coords(pred, (height, width)) |
|
|
|
|
|
if save_json: |
|
|
|
image_id = Path(paths[si]).stem |
|
box = pred[:, :4].clone() |
|
scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) |
|
box = xyxy2xywh(box) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(pred.tolist(), box.tolist()): |
|
result = {'image_id': int(image_id) if image_id.isnumeric() else image_id, |
|
'category_id': coco91class[int(p[5])], |
|
'bbox': [round(x, 3) for x in b], |
|
'score': round(p[4], 5)} |
|
jdict.append(result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
evaluator.add(jdict) |
|
evaluator.save() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(prog='test.py') |
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)') |
|
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path') |
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch') |
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') |
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS') |
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') |
|
parser.add_argument('--task', default='val', help="'val', 'test', 'study'") |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--merge', action='store_true', help='use Merge NMS') |
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
opt = parser.parse_args() |
|
opt.save_json |= opt.data.endswith('coco.yaml') |
|
opt.data = check_file(opt.data) |
|
print(opt) |
|
|
|
if opt.task in ['val', 'test']: |
|
test(opt.data, |
|
opt.weights, |
|
opt.batch_size, |
|
opt.img_size, |
|
opt.conf_thres, |
|
opt.iou_thres, |
|
opt.save_json, |
|
opt.single_cls, |
|
opt.augment, |
|
opt.verbose) |
|
|
|
elif opt.task == 'study': |
|
for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']: |
|
f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) |
|
x = list(range(320, 800, 64)) |
|
y = [] |
|
for i in x: |
|
print('\nRunning %s point %s...' % (f, i)) |
|
r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json) |
|
y.append(r + t) |
|
np.savetxt(f, y, fmt='%10.4g') |
|
os.system('zip -r study.zip study_*.txt') |
|
|