|
<a href="https://apps.apple.com/app/id1452689527" target="_blank"> |
|
<img src="https://user-images.githubusercontent.com/26833433/98699617-a1595a00-2377-11eb-8145-fc674eb9b1a7.jpg" width="1000"></a> |
|
  |
|
|
|
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> |
|
|
|
This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk. |
|
|
|
<img src="https://user-images.githubusercontent.com/26833433/103594689-455e0e00-4eae-11eb-9cdf-7d753e2ceeeb.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. |
|
|
|
- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration. |
|
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP. |
|
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP. |
|
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972). |
|
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145). |
|
|
|
|
|
## Pretrained Checkpoints |
|
|
|
| Model | size | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>V100</sub> | FPS<sub>V100</sub> || params | GFLOPS | |
|
|---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: | |
|
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0 |
|
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3 |
|
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4 |
|
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8 |
|
| | | | | | | || | |
|
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3 |
|
|
|
<!--- |
|
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |640 |49.0 |49.0 |67.4 |4.1ms |244 ||77.2M |117.7 |
|
| [YOLOv5l6](https://github.com/ultralytics/yolov5/releases) |1280 |53.0 |53.0 |70.8 |12.3ms |81 ||77.2M |117.7 |
|
---> |
|
|
|
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. |
|
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` |
|
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` |
|
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). |
|
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment` |
|
|
|
|
|
## Requirements |
|
|
|
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run: |
|
```bash |
|
$ pip install -r requirements.txt |
|
``` |
|
|
|
|
|
## Tutorials |
|
|
|
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) π RECOMMENDED |
|
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) π NEW |
|
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) |
|
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) β NEW |
|
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251) |
|
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) |
|
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) |
|
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) |
|
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) |
|
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) β NEW |
|
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) |
|
|
|
|
|
## Environments |
|
|
|
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): |
|
|
|
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> |
|
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) |
|
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) |
|
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> |
|
|
|
|
|
## Inference |
|
|
|
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. |
|
```bash |
|
$ python detect.py --source 0 # webcam |
|
file.jpg # image |
|
file.mp4 # video |
|
path/ # directory |
|
path/*.jpg # glob |
|
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream |
|
rtmp://192.168.1.105/live/test # rtmp stream |
|
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream |
|
``` |
|
|
|
To run inference on example images in `data/images`: |
|
```bash |
|
$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25 |
|
|
|
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt']) |
|
YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB) |
|
|
|
Fusing layers... |
|
Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS |
|
image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s) |
|
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s) |
|
Results saved to runs/detect/exp2 |
|
Done. (0.103s) |
|
``` |
|
<img src="https://user-images.githubusercontent.com/26833433/97107365-685a8d80-16c7-11eb-8c2e-83aac701d8b9.jpeg" width="500"> |
|
|
|
### PyTorch Hub |
|
|
|
To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36): |
|
```python |
|
import torch |
|
|
|
# Model |
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') |
|
|
|
# Images |
|
dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/' |
|
imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images |
|
|
|
# Inference |
|
results = model(imgs) |
|
results.print() # or .show(), .save() |
|
``` |
|
|
|
|
|
## Training |
|
|
|
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). |
|
```bash |
|
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 |
|
yolov5m 40 |
|
yolov5l 24 |
|
yolov5x 16 |
|
``` |
|
<img src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png" width="900"> |
|
|
|
|
|
## Citation |
|
|
|
[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) |
|
|
|
|
|
## About Us |
|
|
|
Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including: |
|
- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.** |
|
- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.** |
|
- **Custom data training**, hyperparameter evolution, and model exportation to any destination. |
|
|
|
For business inquiries and professional support requests please visit us at https://www.ultralytics.com. |
|
|
|
|
|
## Contact |
|
|
|
**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com. |
|
|