|
<div align="center"> |
|
<p> |
|
<a align="left" href="https://ultralytics.com/yolov5" target="_blank"> |
|
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> |
|
</p> |
|
<br> |
|
<div> |
|
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> |
|
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> |
|
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> |
|
<br> |
|
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> |
|
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> |
|
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> |
|
</div> |
|
<br> |
|
<div align="center"> |
|
<a href="https://github.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/> |
|
</a> |
|
<img width="2%" /> |
|
<a href="https://www.linkedin.com/company/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/> |
|
</a> |
|
<img width="2%" /> |
|
<a href="https://twitter.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/> |
|
</a> |
|
<img width="2%" /> |
|
<a href="https://youtube.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/> |
|
</a> |
|
<img width="2%" /> |
|
<a href="https://www.facebook.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/> |
|
</a> |
|
<img width="2%" /> |
|
<a href="https://www.instagram.com/ultralytics/"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/> |
|
</a> |
|
</div> |
|
|
|
<br> |
|
<p> |
|
YOLOv5 π is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a> |
|
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. |
|
</p> |
|
|
|
<!-- |
|
<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> |
|
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> |
|
--> |
|
|
|
</div> |
|
|
|
## <div align="center">Documentation</div> |
|
|
|
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. |
|
|
|
## <div align="center">Quick Start Examples</div> |
|
|
|
<details open> |
|
<summary>Install</summary> |
|
|
|
[**Python>=3.6.0**](https://www.python.org/) is required with all |
|
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including |
|
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): |
|
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev --> |
|
|
|
```bash |
|
$ git clone https://github.com/ultralytics/yolov5 |
|
$ cd yolov5 |
|
$ pip install -r requirements.txt |
|
``` |
|
|
|
</details> |
|
|
|
<details open> |
|
<summary>Inference</summary> |
|
|
|
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download |
|
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). |
|
|
|
```python |
|
import torch |
|
|
|
# Model |
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom |
|
|
|
# Images |
|
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list |
|
|
|
# Inference |
|
results = model(img) |
|
|
|
# Results |
|
results.print() # or .show(), .save(), .crop(), .pandas(), etc. |
|
``` |
|
|
|
</details> |
|
|
|
|
|
|
|
<details> |
|
<summary>Inference with detect.py</summary> |
|
|
|
`detect.py` runs inference on a variety of sources, downloading models automatically from |
|
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. |
|
|
|
```bash |
|
$ python detect.py --source 0 # webcam |
|
file.jpg # image |
|
file.mp4 # video |
|
path/ # directory |
|
path/*.jpg # glob |
|
'https://youtu.be/NUsoVlDFqZg' # YouTube |
|
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream |
|
``` |
|
|
|
</details> |
|
|
|
<details> |
|
<summary>Training</summary> |
|
|
|
Run commands below to reproduce results |
|
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on |
|
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the |
|
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). |
|
|
|
```bash |
|
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 |
|
yolov5m 40 |
|
yolov5l 24 |
|
yolov5x 16 |
|
``` |
|
|
|
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> |
|
|
|
</details> |
|
|
|
<details open> |
|
<summary>Tutorials</summary> |
|
|
|
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) π RECOMMENDED |
|
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) βοΈ |
|
RECOMMENDED |
|
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) π NEW |
|
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) π NEW |
|
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) |
|
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) β NEW |
|
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) π |
|
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) |
|
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) |
|
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) |
|
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) |
|
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) β NEW |
|
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) |
|
|
|
</details> |
|
|
|
## <div align="center">Environments</div> |
|
|
|
Get started in seconds with our verified environments. Click each icon below for details. |
|
|
|
<div align="center"> |
|
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> |
|
</a> |
|
<a href="https://www.kaggle.com/ultralytics/yolov5"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> |
|
</a> |
|
<a href="https://hub.docker.com/r/ultralytics/yolov5"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> |
|
</a> |
|
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> |
|
</a> |
|
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> |
|
</a> |
|
</div> |
|
|
|
## <div align="center">Integrations</div> |
|
|
|
<div align="center"> |
|
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/> |
|
</a> |
|
<a href="https://roboflow.com/?ref=ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/> |
|
</a> |
|
</div> |
|
|
|
|Weights and Biases|Roboflow β NEW| |
|
|:-:|:-:| |
|
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | |
|
|
|
|
|
<!-- ## <div align="center">Compete and Win</div> |
|
|
|
We are super excited about our first-ever Ultralytics YOLOv5 π EXPORT Competition with **$10,000** in cash prizes! |
|
|
|
<p align="center"> |
|
<a href="https://github.com/ultralytics/yolov5/discussions/3213"> |
|
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> |
|
</p> --> |
|
|
|
## <div align="center">Why YOLOv5</div> |
|
|
|
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p> |
|
<details> |
|
<summary>YOLOv5-P5 640 Figure (click to expand)</summary> |
|
|
|
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p> |
|
</details> |
|
<details> |
|
<summary>Figure Notes (click to expand)</summary> |
|
|
|
* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. |
|
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. |
|
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. |
|
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` |
|
</details> |
|
|
|
### Pretrained Checkpoints |
|
|
|
[assets]: https://github.com/ultralytics/yolov5/releases |
|
[TTA]: https://github.com/ultralytics/yolov5/issues/303 |
|
|
|
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B) |
|
|--- |--- |--- |--- |--- |--- |--- |--- |--- |
|
|[YOLOv5n][assets] |640 |28.4 |46.0 |**45** |**6.3**|**0.6**|**1.9**|**4.5** |
|
|[YOLOv5s][assets] |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5 |
|
|[YOLOv5m][assets] |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0 |
|
|[YOLOv5l][assets] |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1 |
|
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7 |
|
| | | | | | | | | |
|
|[YOLOv5n6][assets] |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6 |
|
|[YOLOv5s6][assets] |1280 |44.5 |63.0 |385 |8.2 |3.6 |16.8 |12.6 |
|
|[YOLOv5m6][assets] |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0 |
|
|[YOLOv5l6][assets] |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.8 |111.4 |
|
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>- |
|
|
|
<details> |
|
<summary>Table Notes (click to expand)</summary> |
|
|
|
* All checkpoints are trained to 300 epochs with default settings and hyperparameters. |
|
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` |
|
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` |
|
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` |
|
|
|
</details> |
|
|
|
## <div align="center">Contribute</div> |
|
|
|
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! |
|
|
|
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a> |
|
|
|
|
|
## <div align="center">Contact</div> |
|
|
|
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or |
|
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact). |
|
|
|
<br> |
|
|
|
<div align="center"> |
|
<a href="https://github.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/> |
|
</a> |
|
<img width="3%" /> |
|
<a href="https://www.linkedin.com/company/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/> |
|
</a> |
|
<img width="3%" /> |
|
<a href="https://twitter.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/> |
|
</a> |
|
<img width="3%" /> |
|
<a href="https://youtube.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/> |
|
</a> |
|
<img width="3%" /> |
|
<a href="https://www.facebook.com/ultralytics"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/> |
|
</a> |
|
<img width="3%" /> |
|
<a href="https://www.instagram.com/ultralytics/"> |
|
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/> |
|
</a> |
|
</div> |
|
|