|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import paddle |
|
import paddle.nn.functional as F |
|
from paddle import nn |
|
|
|
from .resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims |
|
|
|
|
|
class DownResnetBlock1D(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels=None, |
|
num_layers=1, |
|
conv_shortcut=False, |
|
temb_channels=32, |
|
groups=32, |
|
groups_out=None, |
|
non_linearity=None, |
|
time_embedding_norm="default", |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.time_embedding_norm = time_embedding_norm |
|
self.add_downsample = add_downsample |
|
self.output_scale_factor = output_scale_factor |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
|
|
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)] |
|
|
|
for _ in range(num_layers): |
|
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = lambda x: F.silu(x) |
|
elif non_linearity == "mish": |
|
self.nonlinearity = nn.Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.Silu() |
|
else: |
|
self.nonlinearity = None |
|
|
|
self.downsample = None |
|
if add_downsample: |
|
self.downsample = Downsample1D(out_channels, use_conv=True, padding=1) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
output_states = () |
|
|
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for resnet in self.resnets[1:]: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
output_states += (hidden_states,) |
|
|
|
if self.nonlinearity is not None: |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.downsample is not None: |
|
hidden_states = self.downsample(hidden_states) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class UpResnetBlock1D(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels=None, |
|
num_layers=1, |
|
temb_channels=32, |
|
groups=32, |
|
groups_out=None, |
|
non_linearity=None, |
|
time_embedding_norm="default", |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.time_embedding_norm = time_embedding_norm |
|
self.add_upsample = add_upsample |
|
self.output_scale_factor = output_scale_factor |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
|
|
resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)] |
|
|
|
for _ in range(num_layers): |
|
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = lambda x: F.silu(x) |
|
elif non_linearity == "mish": |
|
self.nonlinearity = nn.Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.Silu() |
|
else: |
|
self.nonlinearity = None |
|
|
|
self.upsample = None |
|
if add_upsample: |
|
self.upsample = Upsample1D(out_channels, use_conv_transpose=True) |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple=None, temb=None): |
|
if res_hidden_states_tuple is not None: |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
hidden_states = paddle.concat((hidden_states, res_hidden_states), axis=1) |
|
|
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for resnet in self.resnets[1:]: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.nonlinearity is not None: |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
hidden_states = self.upsample(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ValueFunctionMidBlock1D(nn.Layer): |
|
def __init__(self, in_channels, out_channels, embed_dim): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.embed_dim = embed_dim |
|
|
|
self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim) |
|
self.down1 = Downsample1D(out_channels // 2, use_conv=True) |
|
self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim) |
|
self.down2 = Downsample1D(out_channels // 4, use_conv=True) |
|
|
|
def forward(self, x, temb=None): |
|
x = self.res1(x, temb) |
|
x = self.down1(x) |
|
x = self.res2(x, temb) |
|
x = self.down2(x) |
|
return x |
|
|
|
|
|
class MidResTemporalBlock1D(nn.Layer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
embed_dim, |
|
num_layers: int = 1, |
|
add_downsample: bool = False, |
|
add_upsample: bool = False, |
|
non_linearity=None, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.add_downsample = add_downsample |
|
|
|
|
|
resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)] |
|
|
|
for _ in range(num_layers): |
|
resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim)) |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = lambda x: F.silu(x) |
|
elif non_linearity == "mish": |
|
self.nonlinearity = nn.Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.Silu() |
|
else: |
|
self.nonlinearity = None |
|
|
|
self.upsample = None |
|
if add_upsample: |
|
self.upsample = Downsample1D(out_channels, use_conv=True) |
|
|
|
self.downsample = None |
|
if add_downsample: |
|
self.downsample = Downsample1D(out_channels, use_conv=True) |
|
|
|
if self.upsample and self.downsample: |
|
raise ValueError("Block cannot downsample and upsample") |
|
|
|
def forward(self, hidden_states, temb): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for resnet in self.resnets[1:]: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if self.upsample: |
|
hidden_states = self.upsample(hidden_states) |
|
if self.downsample: |
|
self.downsample = self.downsample(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class OutConv1DBlock(nn.Layer): |
|
def __init__(self, num_groups_out, out_channels, embed_dim, act_fn): |
|
super().__init__() |
|
self.final_conv1d_1 = nn.Conv1D(embed_dim, embed_dim, 5, padding=2) |
|
self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim) |
|
if act_fn == "silu": |
|
self.final_conv1d_act = nn.Silu() |
|
if act_fn == "mish": |
|
self.final_conv1d_act = nn.Mish() |
|
self.final_conv1d_2 = nn.Conv1D(embed_dim, out_channels, 1) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = self.final_conv1d_1(hidden_states) |
|
hidden_states = rearrange_dims(hidden_states) |
|
hidden_states = self.final_conv1d_gn(hidden_states) |
|
hidden_states = rearrange_dims(hidden_states) |
|
hidden_states = self.final_conv1d_act(hidden_states) |
|
hidden_states = self.final_conv1d_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class OutValueFunctionBlock(nn.Layer): |
|
def __init__(self, fc_dim, embed_dim): |
|
super().__init__() |
|
self.final_block = nn.LayerList( |
|
[ |
|
nn.Linear(fc_dim + embed_dim, fc_dim // 2), |
|
nn.Mish(), |
|
nn.Linear(fc_dim // 2, 1), |
|
] |
|
) |
|
|
|
def forward(self, hidden_states, temb): |
|
hidden_states = hidden_states.reshape([hidden_states.shape[0], -1]) |
|
hidden_states = paddle.concat((hidden_states, temb), axis=-1) |
|
for layer in self.final_block: |
|
hidden_states = layer(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
_kernels = { |
|
"linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8], |
|
"cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875], |
|
"lanczos3": [ |
|
0.003689131001010537, |
|
0.015056144446134567, |
|
-0.03399861603975296, |
|
-0.066637322306633, |
|
0.13550527393817902, |
|
0.44638532400131226, |
|
0.44638532400131226, |
|
0.13550527393817902, |
|
-0.066637322306633, |
|
-0.03399861603975296, |
|
0.015056144446134567, |
|
0.003689131001010537, |
|
], |
|
} |
|
|
|
|
|
class Downsample1d(nn.Layer): |
|
def __init__(self, kernel="linear", pad_mode="reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = paddle.to_tensor(_kernels[kernel]) |
|
self.pad = kernel_1d.shape[0] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode, data_format="NCL") |
|
weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) |
|
indices = paddle.arange(hidden_states.shape[1]) |
|
weight[indices, indices] = self.kernel.cast(weight.dtype) |
|
return F.conv1d(hidden_states, weight, stride=2) |
|
|
|
|
|
class Upsample1d(nn.Layer): |
|
def __init__(self, kernel="linear", pad_mode="reflect"): |
|
super().__init__() |
|
self.pad_mode = pad_mode |
|
kernel_1d = paddle.to_tensor(_kernels[kernel]) * 2 |
|
self.pad = kernel_1d.shape[0] // 2 - 1 |
|
self.register_buffer("kernel", kernel_1d) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode, data_format="NCL") |
|
weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) |
|
indices = paddle.arange(hidden_states.shape[1]) |
|
weight[indices, indices] = self.kernel.cast(weight.dtype) |
|
return F.conv1d_transpose(hidden_states, weight, stride=2, padding=self.pad * 2 + 1) |
|
|
|
|
|
class SelfAttention1d(nn.Layer): |
|
def __init__(self, in_channels, n_head=1, dropout_rate=0.0): |
|
super().__init__() |
|
self.channels = in_channels |
|
self.group_norm = nn.GroupNorm(1, num_channels=in_channels) |
|
self.num_heads = n_head |
|
|
|
self.query = nn.Linear(self.channels, self.channels) |
|
self.key = nn.Linear(self.channels, self.channels) |
|
self.value = nn.Linear(self.channels, self.channels) |
|
|
|
self.proj_attn = nn.Linear(self.channels, self.channels) |
|
|
|
self.dropout = nn.Dropout(dropout_rate) |
|
|
|
|
|
def transpose_for_scores(self, projection: paddle.Tensor) -> paddle.Tensor: |
|
new_projection_shape = projection.shape[:-1] + [self.num_heads, -1] |
|
|
|
new_projection = projection.reshape(new_projection_shape).transpose([0, 2, 1, 3]) |
|
return new_projection |
|
|
|
def forward(self, hidden_states): |
|
residual = hidden_states |
|
|
|
hidden_states = self.group_norm(hidden_states) |
|
hidden_states = hidden_states.transpose([0, 2, 1]) |
|
|
|
query_proj = self.query(hidden_states) |
|
key_proj = self.key(hidden_states) |
|
value_proj = self.value(hidden_states) |
|
|
|
query_states = self.transpose_for_scores(query_proj) |
|
key_states = self.transpose_for_scores(key_proj) |
|
value_states = self.transpose_for_scores(value_proj) |
|
|
|
scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1])) |
|
|
|
attention_scores = paddle.matmul(query_states * scale, key_states * scale, transpose_y=True) |
|
attention_probs = F.softmax(attention_scores, axis=-1) |
|
|
|
|
|
hidden_states = paddle.matmul(attention_probs, value_states) |
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1, 3]) |
|
new_hidden_states_shape = hidden_states.shape[:-2] + [ |
|
self.channels, |
|
] |
|
hidden_states = hidden_states.reshape(new_hidden_states_shape) |
|
|
|
|
|
hidden_states = self.proj_attn(hidden_states) |
|
hidden_states = hidden_states.transpose([0, 2, 1]) |
|
hidden_states = self.dropout(hidden_states) |
|
output = hidden_states + residual |
|
|
|
return output |
|
|
|
|
|
class ResConvBlock(nn.Layer): |
|
def __init__(self, in_channels, mid_channels, out_channels, is_last=False): |
|
super().__init__() |
|
self.is_last = is_last |
|
self.has_conv_skip = in_channels != out_channels |
|
|
|
if self.has_conv_skip: |
|
self.conv_skip = nn.Conv1D(in_channels, out_channels, 1, bias_attr=False) |
|
|
|
self.conv_1 = nn.Conv1D(in_channels, mid_channels, 5, padding=2) |
|
self.group_norm_1 = nn.GroupNorm(1, mid_channels) |
|
self.gelu_1 = nn.GELU() |
|
self.conv_2 = nn.Conv1D(mid_channels, out_channels, 5, padding=2) |
|
|
|
if not self.is_last: |
|
self.group_norm_2 = nn.GroupNorm(1, out_channels) |
|
self.gelu_2 = nn.GELU() |
|
|
|
def forward(self, hidden_states): |
|
residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states |
|
|
|
hidden_states = self.conv_1(hidden_states) |
|
hidden_states = self.group_norm_1(hidden_states) |
|
hidden_states = self.gelu_1(hidden_states) |
|
hidden_states = self.conv_2(hidden_states) |
|
|
|
if not self.is_last: |
|
hidden_states = self.group_norm_2(hidden_states) |
|
hidden_states = self.gelu_2(hidden_states) |
|
|
|
output = hidden_states + residual |
|
return output |
|
|
|
|
|
class UNetMidBlock1D(nn.Layer): |
|
def __init__(self, mid_channels, in_channels, out_channels=None): |
|
super().__init__() |
|
|
|
out_channels = in_channels if out_channels is None else out_channels |
|
|
|
|
|
self.down = Downsample1d("cubic") |
|
resnets = [ |
|
ResConvBlock(in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
attentions = [ |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(out_channels, out_channels // 32), |
|
] |
|
self.up = Upsample1d(kernel="cubic") |
|
|
|
self.attentions = nn.LayerList(attentions) |
|
self.resnets = nn.LayerList(resnets) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = self.down(hidden_states) |
|
for attn, resnet in zip(self.attentions, self.resnets): |
|
hidden_states = resnet(hidden_states) |
|
hidden_states = attn(hidden_states) |
|
|
|
hidden_states = self.up(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class AttnDownBlock1D(nn.Layer): |
|
def __init__(self, out_channels, in_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = out_channels if mid_channels is None else mid_channels |
|
|
|
self.down = Downsample1d("cubic") |
|
resnets = [ |
|
ResConvBlock(in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
attentions = [ |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(out_channels, out_channels // 32), |
|
] |
|
|
|
self.attentions = nn.LayerList(attentions) |
|
self.resnets = nn.LayerList(resnets) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = self.down(hidden_states) |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states) |
|
hidden_states = attn(hidden_states) |
|
|
|
return hidden_states, (hidden_states,) |
|
|
|
|
|
class DownBlock1D(nn.Layer): |
|
def __init__(self, out_channels, in_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = out_channels if mid_channels is None else mid_channels |
|
|
|
self.down = Downsample1d("cubic") |
|
resnets = [ |
|
ResConvBlock(in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = self.down(hidden_states) |
|
|
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states) |
|
|
|
return hidden_states, (hidden_states,) |
|
|
|
|
|
class DownBlock1DNoSkip(nn.Layer): |
|
def __init__(self, out_channels, in_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = out_channels if mid_channels is None else mid_channels |
|
|
|
resnets = [ |
|
ResConvBlock(in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
def forward(self, hidden_states, temb=None): |
|
hidden_states = paddle.concat([hidden_states, temb], axis=1) |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states) |
|
|
|
return hidden_states, (hidden_states,) |
|
|
|
|
|
class AttnUpBlock1D(nn.Layer): |
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = out_channels if mid_channels is None else mid_channels |
|
|
|
resnets = [ |
|
ResConvBlock(2 * in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
attentions = [ |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(mid_channels, mid_channels // 32), |
|
SelfAttention1d(out_channels, out_channels // 32), |
|
] |
|
|
|
self.attentions = nn.LayerList(attentions) |
|
self.resnets = nn.LayerList(resnets) |
|
self.up = Upsample1d(kernel="cubic") |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) |
|
|
|
for resnet, attn in zip(self.resnets, self.attentions): |
|
hidden_states = resnet(hidden_states) |
|
hidden_states = attn(hidden_states) |
|
|
|
hidden_states = self.up(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpBlock1D(nn.Layer): |
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = in_channels if mid_channels is None else mid_channels |
|
|
|
resnets = [ |
|
ResConvBlock(2 * in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels), |
|
] |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
self.up = Upsample1d(kernel="cubic") |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states) |
|
|
|
hidden_states = self.up(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpBlock1DNoSkip(nn.Layer): |
|
def __init__(self, in_channels, out_channels, mid_channels=None): |
|
super().__init__() |
|
mid_channels = in_channels if mid_channels is None else mid_channels |
|
|
|
resnets = [ |
|
ResConvBlock(2 * in_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, mid_channels), |
|
ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True), |
|
] |
|
|
|
self.resnets = nn.LayerList(resnets) |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None): |
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) |
|
for resnet in self.resnets: |
|
hidden_states = resnet(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample): |
|
if down_block_type == "DownResnetBlock1D": |
|
return DownResnetBlock1D( |
|
in_channels=in_channels, |
|
num_layers=num_layers, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
) |
|
elif down_block_type == "DownBlock1D": |
|
return DownBlock1D(out_channels=out_channels, in_channels=in_channels) |
|
elif down_block_type == "AttnDownBlock1D": |
|
return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels) |
|
elif down_block_type == "DownBlock1DNoSkip": |
|
return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block(up_block_type, num_layers, in_channels, out_channels, temb_channels, add_upsample): |
|
if up_block_type == "UpResnetBlock1D": |
|
return UpResnetBlock1D( |
|
in_channels=in_channels, |
|
num_layers=num_layers, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
) |
|
elif up_block_type == "UpBlock1D": |
|
return UpBlock1D(in_channels=in_channels, out_channels=out_channels) |
|
elif up_block_type == "AttnUpBlock1D": |
|
return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels) |
|
elif up_block_type == "UpBlock1DNoSkip": |
|
return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
def get_mid_block(mid_block_type, num_layers, in_channels, mid_channels, out_channels, embed_dim, add_downsample): |
|
if mid_block_type == "MidResTemporalBlock1D": |
|
return MidResTemporalBlock1D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
embed_dim=embed_dim, |
|
add_downsample=add_downsample, |
|
) |
|
elif mid_block_type == "ValueFunctionMidBlock1D": |
|
return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim) |
|
elif mid_block_type == "UNetMidBlock1D": |
|
return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels) |
|
raise ValueError(f"{mid_block_type} does not exist.") |
|
|
|
|
|
def get_out_block(*, out_block_type, num_groups_out, embed_dim, out_channels, act_fn, fc_dim): |
|
if out_block_type == "OutConv1DBlock": |
|
return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn) |
|
elif out_block_type == "ValueFunction": |
|
return OutValueFunctionBlock(fc_dim, embed_dim) |
|
return None |
|
|