Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import craftsman | |
from craftsman.utils.typing import * | |
def dot(x, y): | |
return torch.sum(x * y, -1, keepdim=True) | |
class Mesh: | |
def __init__( | |
self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs | |
) -> None: | |
self.v_pos: Float[Tensor, "Nv 3"] = v_pos | |
self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx | |
self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None | |
self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None | |
self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None | |
self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None | |
self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None | |
self._edges: Optional[Integer[Tensor, "Ne 2"]] = None | |
self.extras: Dict[str, Any] = {} | |
for k, v in kwargs.items(): | |
self.add_extra(k, v) | |
def add_extra(self, k, v): | |
self.extras[k] = v | |
def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]): | |
if self.requires_grad: | |
craftsman.debug("Mesh is differentiable, not removing outliers") | |
return self | |
# use trimesh to first split the mesh into connected components | |
# then remove the components with less than n_face_threshold faces | |
import trimesh | |
# construct a trimesh object | |
mesh = trimesh.Trimesh( | |
vertices=self.v_pos.detach().cpu().numpy(), | |
faces=self.t_pos_idx.detach().cpu().numpy(), | |
) | |
# split the mesh into connected components | |
components = mesh.split(only_watertight=False) | |
# log the number of faces in each component | |
craftsman.debug( | |
"Mesh has {} components, with faces: {}".format( | |
len(components), [c.faces.shape[0] for c in components] | |
) | |
) | |
n_faces_threshold: int | |
if isinstance(outlier_n_faces_threshold, float): | |
# set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold | |
n_faces_threshold = int( | |
max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold | |
) | |
else: | |
# set the threshold directly to outlier_n_faces_threshold | |
n_faces_threshold = outlier_n_faces_threshold | |
# log the threshold | |
craftsman.debug( | |
"Removing components with less than {} faces".format(n_faces_threshold) | |
) | |
# remove the components with less than n_face_threshold faces | |
components = [c for c in components if c.faces.shape[0] >= n_faces_threshold] | |
# log the number of faces in each component after removing outliers | |
craftsman.debug( | |
"Mesh has {} components after removing outliers, with faces: {}".format( | |
len(components), [c.faces.shape[0] for c in components] | |
) | |
) | |
# merge the components | |
mesh = trimesh.util.concatenate(components) | |
# convert back to our mesh format | |
v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos) | |
t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx) | |
clean_mesh = Mesh(v_pos, t_pos_idx) | |
# keep the extras unchanged | |
if len(self.extras) > 0: | |
clean_mesh.extras = self.extras | |
craftsman.debug( | |
f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}" | |
) | |
return clean_mesh | |
def requires_grad(self): | |
return self.v_pos.requires_grad | |
def v_nrm(self): | |
if self._v_nrm is None: | |
self._v_nrm = self._compute_vertex_normal() | |
return self._v_nrm | |
def v_tng(self): | |
if self._v_tng is None: | |
self._v_tng = self._compute_vertex_tangent() | |
return self._v_tng | |
def v_tex(self): | |
if self._v_tex is None: | |
self._v_tex, self._t_tex_idx = self._unwrap_uv() | |
return self._v_tex | |
def t_tex_idx(self): | |
if self._t_tex_idx is None: | |
self._v_tex, self._t_tex_idx = self._unwrap_uv() | |
return self._t_tex_idx | |
def v_rgb(self): | |
return self._v_rgb | |
def edges(self): | |
if self._edges is None: | |
self._edges = self._compute_edges() | |
return self._edges | |
def _compute_vertex_normal(self): | |
i0 = self.t_pos_idx[:, 0] | |
i1 = self.t_pos_idx[:, 1] | |
i2 = self.t_pos_idx[:, 2] | |
v0 = self.v_pos[i0, :] | |
v1 = self.v_pos[i1, :] | |
v2 = self.v_pos[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0) | |
# Splat face normals to vertices | |
v_nrm = torch.zeros_like(self.v_pos) | |
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) | |
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) | |
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) | |
# Normalize, replace zero (degenerated) normals with some default value | |
v_nrm = torch.where( | |
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) | |
) | |
v_nrm = F.normalize(v_nrm, dim=1) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(v_nrm)) | |
return v_nrm | |
def _compute_vertex_tangent(self): | |
vn_idx = [None] * 3 | |
pos = [None] * 3 | |
tex = [None] * 3 | |
for i in range(0, 3): | |
pos[i] = self.v_pos[self.t_pos_idx[:, i]] | |
tex[i] = self.v_tex[self.t_tex_idx[:, i]] | |
# t_nrm_idx is always the same as t_pos_idx | |
vn_idx[i] = self.t_pos_idx[:, i] | |
tangents = torch.zeros_like(self.v_nrm) | |
tansum = torch.zeros_like(self.v_nrm) | |
# Compute tangent space for each triangle | |
uve1 = tex[1] - tex[0] | |
uve2 = tex[2] - tex[0] | |
pe1 = pos[1] - pos[0] | |
pe2 = pos[2] - pos[0] | |
nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] | |
denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] | |
# Avoid division by zero for degenerated texture coordinates | |
tang = nom / torch.where( | |
denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6) | |
) | |
# Update all 3 vertices | |
for i in range(0, 3): | |
idx = vn_idx[i][:, None].repeat(1, 3) | |
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang | |
tansum.scatter_add_( | |
0, idx, torch.ones_like(tang) | |
) # tansum[n_i] = tansum[n_i] + 1 | |
tangents = tangents / tansum | |
# Normalize and make sure tangent is perpendicular to normal | |
tangents = F.normalize(tangents, dim=1) | |
tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(tangents)) | |
return tangents | |
def _unwrap_uv( | |
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} | |
): | |
craftsman.info("Using xatlas to perform UV unwrapping, may take a while ...") | |
import xatlas | |
atlas = xatlas.Atlas() | |
atlas.add_mesh( | |
self.v_pos.detach().cpu().numpy(), | |
self.t_pos_idx.cpu().numpy(), | |
) | |
co = xatlas.ChartOptions() | |
po = xatlas.PackOptions() | |
for k, v in xatlas_chart_options.items(): | |
setattr(co, k, v) | |
for k, v in xatlas_pack_options.items(): | |
setattr(po, k, v) | |
setattr(co, 'max_cost', 2.0) | |
setattr(po, 'resolution', 4096) | |
atlas.generate(co, po, verbose=True) | |
vmapping, indices, uvs = atlas.get_mesh(0) | |
vmapping = ( | |
torch.from_numpy( | |
vmapping.astype(np.uint64, casting="same_kind").view(np.int64) | |
) | |
.to(self.v_pos.device) | |
.long() | |
) | |
uvs = torch.from_numpy(uvs).to(self.v_pos.device).float() | |
indices = ( | |
torch.from_numpy( | |
indices.astype(np.uint64, casting="same_kind").view(np.int64) | |
) | |
.to(self.v_pos.device) | |
.long() | |
) | |
return uvs, indices | |
def unwrap_uv( | |
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} | |
): | |
self._v_tex, self._t_tex_idx = self._unwrap_uv( | |
xatlas_chart_options, xatlas_pack_options | |
) | |
def set_vertex_color(self, v_rgb): | |
assert v_rgb.shape[0] == self.v_pos.shape[0] | |
self._v_rgb = v_rgb | |
def _compute_edges(self): | |
# Compute edges | |
edges = torch.cat( | |
[ | |
self.t_pos_idx[:, [0, 1]], | |
self.t_pos_idx[:, [1, 2]], | |
self.t_pos_idx[:, [2, 0]], | |
], | |
dim=0, | |
) | |
edges = edges.sort()[0] | |
edges = torch.unique(edges, dim=0) | |
return edges | |
def normal_consistency(self) -> Float[Tensor, ""]: | |
edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges] | |
nc = ( | |
1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1) | |
).mean() | |
return nc | |
def _laplacian_uniform(self): | |
# from stable-dreamfusion | |
# https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224 | |
verts, faces = self.v_pos, self.t_pos_idx | |
V = verts.shape[0] | |
F = faces.shape[0] | |
# Neighbor indices | |
ii = faces[:, [1, 2, 0]].flatten() | |
jj = faces[:, [2, 0, 1]].flatten() | |
adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique( | |
dim=1 | |
) | |
adj_values = torch.ones(adj.shape[1]).to(verts) | |
# Diagonal indices | |
diag_idx = adj[0] | |
# Build the sparse matrix | |
idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) | |
values = torch.cat((-adj_values, adj_values)) | |
# The coalesce operation sums the duplicate indices, resulting in the | |
# correct diagonal | |
return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce() | |
def laplacian(self) -> Float[Tensor, ""]: | |
with torch.no_grad(): | |
L = self._laplacian_uniform() | |
loss = L.mm(self.v_pos) | |
loss = loss.norm(dim=1) | |
loss = loss.mean() | |
return loss | |
class IsosurfaceHelper(nn.Module): | |
points_range: Tuple[float, float] = (0, 1) | |
def grid_vertices(self) -> Float[Tensor, "N 3"]: | |
raise NotImplementedError | |
class MarchingCubeCPUHelper(IsosurfaceHelper): | |
def __init__(self, resolution: int) -> None: | |
super().__init__() | |
self.resolution = resolution | |
import mcubes | |
self.mc_func: Callable = mcubes.marching_cubes | |
self._grid_vertices: Optional[Float[Tensor, "N3 3"]] = None | |
self._dummy: Float[Tensor, "..."] | |
self.register_buffer( | |
"_dummy", torch.zeros(0, dtype=torch.float32), persistent=False | |
) | |
def grid_vertices(self) -> Float[Tensor, "N3 3"]: | |
if self._grid_vertices is None: | |
# keep the vertices on CPU so that we can support very large resolution | |
x, y, z = ( | |
torch.linspace(*self.points_range, self.resolution), | |
torch.linspace(*self.points_range, self.resolution), | |
torch.linspace(*self.points_range, self.resolution), | |
) | |
x, y, z = torch.meshgrid(x, y, z, indexing="ij") | |
verts = torch.cat( | |
[x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1 | |
).reshape(-1, 3) | |
self._grid_vertices = verts | |
return self._grid_vertices | |
def forward( | |
self, | |
level: Float[Tensor, "N3 1"], | |
deformation: Optional[Float[Tensor, "N3 3"]] = None, | |
) -> Mesh: | |
if deformation is not None: | |
craftsman.warn( | |
f"{self.__class__.__name__} does not support deformation. Ignoring." | |
) | |
level = -level.view(self.resolution, self.resolution, self.resolution) | |
v_pos, t_pos_idx = self.mc_func( | |
level.detach().cpu().numpy(), 0.0 | |
) # transform to numpy | |
v_pos, t_pos_idx = ( | |
torch.from_numpy(v_pos).float().to(self._dummy.device), | |
torch.from_numpy(t_pos_idx.astype(np.int64)).long().to(self._dummy.device), | |
) # transform back to torch tensor on CUDA | |
v_pos = v_pos / (self.resolution - 1.0) | |
return Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx) | |
class MarchingTetrahedraHelper(IsosurfaceHelper): | |
def __init__(self, resolution: int, tets_path: str): | |
super().__init__() | |
self.resolution = resolution | |
self.tets_path = tets_path | |
self.triangle_table: Float[Tensor, "..."] | |
self.register_buffer( | |
"triangle_table", | |
torch.as_tensor( | |
[ | |
[-1, -1, -1, -1, -1, -1], | |
[1, 0, 2, -1, -1, -1], | |
[4, 0, 3, -1, -1, -1], | |
[1, 4, 2, 1, 3, 4], | |
[3, 1, 5, -1, -1, -1], | |
[2, 3, 0, 2, 5, 3], | |
[1, 4, 0, 1, 5, 4], | |
[4, 2, 5, -1, -1, -1], | |
[4, 5, 2, -1, -1, -1], | |
[4, 1, 0, 4, 5, 1], | |
[3, 2, 0, 3, 5, 2], | |
[1, 3, 5, -1, -1, -1], | |
[4, 1, 2, 4, 3, 1], | |
[3, 0, 4, -1, -1, -1], | |
[2, 0, 1, -1, -1, -1], | |
[-1, -1, -1, -1, -1, -1], | |
], | |
dtype=torch.long, | |
), | |
persistent=False, | |
) | |
self.num_triangles_table: Integer[Tensor, "..."] | |
self.register_buffer( | |
"num_triangles_table", | |
torch.as_tensor( | |
[0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long | |
), | |
persistent=False, | |
) | |
self.base_tet_edges: Integer[Tensor, "..."] | |
self.register_buffer( | |
"base_tet_edges", | |
torch.as_tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long), | |
persistent=False, | |
) | |
tets = np.load(self.tets_path) | |
self._grid_vertices: Float[Tensor, "..."] | |
self.register_buffer( | |
"_grid_vertices", | |
torch.from_numpy(tets["vertices"]).float(), | |
persistent=False, | |
) | |
self.indices: Integer[Tensor, "..."] | |
self.register_buffer( | |
"indices", torch.from_numpy(tets["indices"]).long(), persistent=False | |
) | |
self._all_edges: Optional[Integer[Tensor, "Ne 2"]] = None | |
def normalize_grid_deformation( | |
self, grid_vertex_offsets: Float[Tensor, "Nv 3"] | |
) -> Float[Tensor, "Nv 3"]: | |
return ( | |
(self.points_range[1] - self.points_range[0]) | |
/ (self.resolution) # half tet size is approximately 1 / self.resolution | |
* torch.tanh(grid_vertex_offsets) | |
) # FIXME: hard-coded activation | |
def grid_vertices(self) -> Float[Tensor, "Nv 3"]: | |
return self._grid_vertices | |
def all_edges(self) -> Integer[Tensor, "Ne 2"]: | |
if self._all_edges is None: | |
# compute edges on GPU, or it would be VERY SLOW (basically due to the unique operation) | |
edges = torch.tensor( | |
[0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], | |
dtype=torch.long, | |
device=self.indices.device, | |
) | |
_all_edges = self.indices[:, edges].reshape(-1, 2) | |
_all_edges_sorted = torch.sort(_all_edges, dim=1)[0] | |
_all_edges = torch.unique(_all_edges_sorted, dim=0) | |
self._all_edges = _all_edges | |
return self._all_edges | |
def sort_edges(self, edges_ex2): | |
with torch.no_grad(): | |
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() | |
order = order.unsqueeze(dim=1) | |
a = torch.gather(input=edges_ex2, index=order, dim=1) | |
b = torch.gather(input=edges_ex2, index=1 - order, dim=1) | |
return torch.stack([a, b], -1) | |
def _forward(self, pos_nx3, sdf_n, tet_fx4): | |
with torch.no_grad(): | |
occ_n = sdf_n > 0 | |
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) | |
occ_sum = torch.sum(occ_fx4, -1) | |
valid_tets = (occ_sum > 0) & (occ_sum < 4) | |
occ_sum = occ_sum[valid_tets] | |
# find all vertices | |
all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2) | |
all_edges = self.sort_edges(all_edges) | |
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) | |
unique_edges = unique_edges.long() | |
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 | |
mapping = ( | |
torch.ones( | |
(unique_edges.shape[0]), dtype=torch.long, device=pos_nx3.device | |
) | |
* -1 | |
) | |
mapping[mask_edges] = torch.arange( | |
mask_edges.sum(), dtype=torch.long, device=pos_nx3.device | |
) | |
idx_map = mapping[idx_map] # map edges to verts | |
interp_v = unique_edges[mask_edges] | |
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) | |
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) | |
edges_to_interp_sdf[:, -1] *= -1 | |
denominator = edges_to_interp_sdf.sum(1, keepdim=True) | |
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator | |
verts = (edges_to_interp * edges_to_interp_sdf).sum(1) | |
idx_map = idx_map.reshape(-1, 6) | |
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=pos_nx3.device)) | |
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) | |
num_triangles = self.num_triangles_table[tetindex] | |
# Generate triangle indices | |
faces = torch.cat( | |
( | |
torch.gather( | |
input=idx_map[num_triangles == 1], | |
dim=1, | |
index=self.triangle_table[tetindex[num_triangles == 1]][:, :3], | |
).reshape(-1, 3), | |
torch.gather( | |
input=idx_map[num_triangles == 2], | |
dim=1, | |
index=self.triangle_table[tetindex[num_triangles == 2]][:, :6], | |
).reshape(-1, 3), | |
), | |
dim=0, | |
) | |
return verts, faces | |
def forward( | |
self, | |
level: Float[Tensor, "N3 1"], | |
deformation: Optional[Float[Tensor, "N3 3"]] = None, | |
) -> Mesh: | |
if deformation is not None: | |
grid_vertices = self.grid_vertices + self.normalize_grid_deformation( | |
deformation | |
) | |
else: | |
grid_vertices = self.grid_vertices | |
v_pos, t_pos_idx = self._forward(grid_vertices, level, self.indices) | |
mesh = Mesh( | |
v_pos=v_pos, | |
t_pos_idx=t_pos_idx, | |
# extras | |
grid_vertices=grid_vertices, | |
tet_edges=self.all_edges, | |
grid_level=level, | |
grid_deformation=deformation, | |
) | |
return mesh | |